最新テクノロジー動向調査

1. 事例概要

1.1.ビジネス対象の事例

図表 1-1 ビジネス利用事例・オーバービュー

囚状 II し ク か ハ か 川 か ・	
名称	概要
AI パーソナライズ	●開発・提供者:atama plus
学習の atama	●分類:教育・学習支援
plus、2週間受講で	●内容:atama plus は、学生の得意、苦手、目標、過去の状況を
センター得点率が	診断し、パーソナライズされた教材をひとりひとりに対して提供
50%向上も 3 カ月で	する。これにより基礎学力の習得に必要な時間を半減させること
導入は 100 教室超え	を狙う。
る	教材の特徴として生徒の「つまづき」に注目しており、不得意分
	野を特定しその箇所を集中的に学習することで学習時間の短縮に
	成功している。
	基礎学力習得にかかる時間を半減させ、より社会で生きる力、例
	えばディスカッションだったり自分で考える能力を伸ばすための
	学習に時間を回すことができるという狙いがある。

名称	概要
物理が分からない生	●開発・提供者:atama plus
徒には数学の問題も	●分類:教育・学習支援
提示 タブレット型	●内容:atama+at home は、塾で同社のタブレット型 AI 教材を
AI 教材「atama+」	利用する生徒を対象に最適な宿題を提供するアプリである。
が宿題アプリを公開	他の同社 AI 教材と相互連携しているため、各生徒の塾内での学
	習状況に応じた宿題の自動配信、さらに塾外での学習状況に応じ
	て塾内での教材も最適化される。講師は各生徒の宿題量のコント
	ロールやリアルタイムでの進捗の把握が可能になる。
	高校生向けの「物理」教材では、生徒がつまずいた箇所によって
	「数学」の講義を出すなど、教科間をまたがった学習が可能にな
	っている。

名称	概要
タブレット型 AI 教	●開発・提供者:atama plus
材「atama+」、合	●分類:教育・学習支援
格しそうな生徒を人	●内容:生徒の学習進捗をもとに「合格しそうなタイミング」を
工知能で予測して教	AI でリアルタイムに予測判定、塾講師向け「atama+ for
えてくれる機能を追	coach」のアラート機能を拡張をした。
加	生徒の集中度や学習の進捗を AI がリアルタイムで解析した上
	で、講師がいつ、どんな声かけをすると効果的かをレコメンドし
	てくれる。講師向けアプリではこれらのアラートに加え、生徒の
	過去および現在の情報を元に、特定単元の合格間近な生徒につい
	ても講師に通知をしてくれるようになる。

名称	概要
貧困による教育格差	●開発・提供者:Qubena
の解消目指す AI タ	●分類:教育・学習支援
ブレット教材	●内容:Qubena では生徒のつまずく原因を特定し、解くべき問題
「Qubena」が NPO 向	へと自動的に誘導してくれる学習教材である。同社が運営する学
け無償提供プログラ	習塾では、中学校数学において従来の学校教育の7倍の速度に匹
ムを開始	敵するとしている。
	現在、経済的な理由で通塾や進学をあきらめるなどの教育格差が
	社会問題となっている。今回、教育格差解消に取り組む NPO 法人
	へ週 1 コマの数学の授業と自習室での学習について無償提供する
	プログラムを開始した。

名称	概要
カーネギーメロン大	●開発・提供者:カーネギーメロン大学
学、米国初の人工知	●分類:教育・学習支援
能の学士課程を新設	●内容:カーネギーメロン大学は、学士号では米国初となる人工
	知能の学士号課程を開始することを発表した。
	学生は、ツールを使う側ではなく、新しい重要な(TensorFlowの
	ような)ツールを作れる仕組みを理解することを目指す。

名称	概要
特化のプログラミン	●開発・提供者:Aidemy
グ学習サービス	●分類:人材育成(社会人研修)
「Aidemy」が正式版	●内容:Aidemy は、オンラインで python の基礎からディープラ
を公開、エンジニア	ーニングまでを学べる AI 特化型プログラミング学習サービスで
のキャリアアップ向	ある。全 20 講座以上の AI・ブロックチェーンの講座が受講でき
け学習を提供	る。

名称	概要
中国の AI エドテッ	●開発・提供者:Sunny Education(合煦)
クスタートアップ	●分類:教育・学習支援
17ZUOYE(一起作	●内容:17ZUOYEは、オンラインで教師、学生、保護者の3者が
業)、シリーズ E で	交流できる学習プラットフォームである。
2.5 億米ドルを調達	補習用テキストブックは、ビッグデータや AI を駆使し毎日の宿
シンガポール政府	題データに基づき、生徒の学力に合わせたコンテンツを提供して
系 Temasek	いる。教師、生徒、保護者に、全教科にわたる宿題の解き方はも
Holdings がリード	ちろんのこと、授業前の準備や個々に合わせた学習支援を行って
	いる。
	また、補習用テキストブックで自主学習をしたり、ライブストリ
	ーミング経由の個別指導コースへの参加も可能である。

名称	概要
チャットボットスタ	●開発・提供者:Udacity、Passage AI
ートアップと提携し	●分類: 教育・学習支援
てコース選択をアド	●内容:dacity は、2012年にローンチし人気とともに提供する
バイス	授業の数が急増している。
	ユーザーの増加とともに山のようにあるコースの中から、自分に
	あったコースを選ぶのが難しくなっているという問題が生じた
	が、ユーザー個々のカウンセリングを提供するのは難しいという
	状況になった。
	これを自然言語処理を用いたチャットボットを通じて、生徒が適
	切なコースを見つけ簡単に入学できるようにアシストするという
	方法で解決した。

名称	概要
AIで煩雑な入学手	●開発・提供者:ジョージア州立大学、Admit Hub
続きにつまづいてい	●分類:教育・学習支援
るかどうかを判断、	●内容:アメリカの大学の多くでは、入学申請をする際に様々な
手続きをサポート	手続きが必要になるためのサポートを開始した。
	このサポートを受けた学生は、その後入学する確率が高まってい
	るという。入学前という段階から、積極的に候補生に働きかけて
	サポートを提供するというプロアクティブなアプローチが新しい
	と注目を集めている。

名称	概要
誰でも深層強化学習	●開発・提供者:OpenAI
のスキルを身に付け	●分類:人材育成(社会人研修)
て活用できるための	●内容:AI 技術を理解するためには機械学習の知識、特に深層強
教育リソース	化学習の理解が不可欠であるが、OpenAI ではこのための教育リソ
「Spinning Up」を	ース「Spinning Up」を公開した。
OpenAI が発表	Spinning Up には、明解なサンプルコードや練習問題、参考文
	献、チュートリアルなどが含まれている。「適切な道しるべや教
	育用リソースさえ整っていれば、全くの初心者でも短い時間で深
	層強化学習を使えるようになる」という考え方をもとに作られた
	教材である。

名称	概要
データセンターの空	●開発・提供者:DeepMind and Google
調自律制御	●分類:制御
	●内容:データセンターの冷却制御への AI の応用事例。数千個
	のセンサーからの5分間隔のデータを元に、与えられた制約を満
	たし最も効率が高くなるように AI が自律的に冷却システムを制
	御する。

名称	概要
テレビショッピング	●開発・提供者:キューサイ株式会社、株式会社 NTT データ株式
番組の制作に人工知	会社 NTT データ経営研究所、
能を活用し効果を確	●分類:広告
認	●内容:キューサイは、NTT データらと共にテレビショッピング
	番組の内容からお客様の問い合わせ電話数(入電件数)を予測する
	システムを開発し、入電件数の増加を実現した。
	機械的に生成した数千通りの構成を評価し最も入電件数が見込め
	ると予測した素材を実際に放送し、従来の制作手法で制作した番
	組と比較検証をおこなった。

名称	概要
AI を搭載した	●開発・提供者:富士通株式会社
「MICJET MISALIO	●分類:業務支援
保育所 AI 入所選	●内容:富士通は自治体職員向け保育業務支援ソフトウェアの提
考」ソフト	供を開始した。
	保育所入所選考業務は各自治体が定める申請者の複雑な条件があ
	り、結果通知に時間を要するという問題があった。
	提供されるソフトウェアでは、ゲーム理論と呼ばれる利害が一致
	しない人々の関係を合理的に解決する数理手法を応用し、優先順
	位に沿った割り当てを数秒で導き出す。

名称	概要
Doc.ai, Crestle.ai	●開発・提供者:Doc.ai、Crestle.ai
を買収し医師の AI	●分類:医療
革命への参加を促す	●内容:Doc.ai では、自身の医療データをデータサイエンティス
	トによる予測 AI モデル作成のためにシェアする人に仮想通貨を
	用いて支払うサービスを提供している。
	今回、Fast. io のコース受講者向けに特化した Crestle を買収し
	たことで、ヘルスケア業界の人々のためのトレーニングを組み合
	わせより多くの医師や医療関係者が予測 AI を作ることができる
	ようにするつもりである。

名称	概要
AI を用いたトポロ	●開発・提供者:株式会社明電舎、北海道大学
ジー最適化手法によ	●分類:設計
る EV 用モーターの	●内容:明電舎はトポロジー最適化手法に AI を用いた EV 用モー
設計支援プログラム	ター設計支援プログラムを北海道大学と共に開発した。これによ
を開発	り、省エネ・高効率が求められる高性能な EV 用モーターにおけ
	る最適なローター形状を自動で探索し、設計することが可能とな
	った。
	従来は人では想像し得なかった形状を得ることが可能となり、さ
	らに性能のよいモーターを設計出来る可能性がある。

名称	概要
AWS のディープラー	●開発・提供者:Amazon、EagleView
ニングを使い、自然	●分類:業務支援
災害による損害賠償	●内容:保険会社は所有物損害の評価のために損害査定人を派遣
を軽減する	するが、大規模な自然災害ではその地域にアクセスできないため
	に、対応するのに数週間かかる場合がある。EagleView 社では、
	衛星、航空写真、無人機の画像を使い、AWS Cloud でディープラ
	ーニングを実行し、24 時間以内に損害賠償を正確に評価する。
	このシステムは、Apache MXNe フレームワークを使用してディー
	プラーニングモデルを構築している。

名称	概要
対話型 AI 開発スタ	●開発・提供者:Spot
ートアップ Spot、	●分類:チャットボット
職場のセクハラに対	●内容:対話型 AI スタートアップの Spot は、職場でのセクハ
応するためのボット	ラ被害を匿名で報告できるボットを発表した。
をローンチ	ボットは、対話型 AI と認知面接の手法を用いて、職場ハラスメ
	ントの情報を収集する。Spot への入力された情報は匿名化される
	が、企業の人事部のスタッフは Spot 上のチャットツールを使っ
	てフォローアップすることができる。

名称	概要
弁護士が作る AI 契	●開発・提供者:LegalForce
約書レビューサービ	●分類:業務支援
ス「LegalForce」の	●内容:LegalForce では、AI 活用の契約書レビュー支援サービ
オープン β 版が公	スを開発しオープン β 版の提供を始めた。
開	このサービスの機能は「契約書の自動レビュー支援」と「契約書
	データベースの作成」の大きく2つである。これらによって契約
	書のリスクや抜け漏れを自動でピックアップすることに加え、社
	内に眠るナレッジを有効活用できるような環境を提供する。

名称	概要
工場での設備診断の	●開発・提供者:株式会社日立製作所
自動化に向け、音で	●分類:診断
稼働状態を認識する	●内容:日立製作所は、周囲の雑音に影響されずに音に基づいて
AI 技術を開発	状況を認識できる AI 技術を開発した。
	従来、センサーを使わない音を利用した設備点検においては熟練
	者が経験に基づき診断していたが、今回開発した本 AI 技術によ
	り音での自動診断サービスなどに活用を見込む。

名称	概要
ファッションテック	●開発・提供者:Liaro
「Liaro」	●分類:レコメンド
	●内容:アパレル業界各社は、AI を活用したさまざまな取り組み
	を行っているが、リアルタイムで大量のデータの活用に重要なデ
	ータ基盤の整備が困難である。そこで Liaro は、アルゴリズムの
	実装だけでなく、データ基盤の開発までトータルに提供してい
	< ∘

名称	概要
ディープラーニング	●開発・提供者:カリフォルニア大学サンフランシスコ校
を用いたアルツハイ	放射線医学画像診断学科
マー病の脳の FDG-	●分類:医療
PET 画像診断	●内容:アルツハイマー病は、早期に見つけることがとても難し
	い病気であるが、FDG-PET による脳のスキャン画像とディープラ
	ーニングを組み合わせた 40 件の事例で、アルツハイマー病の早
	期診断に成功した。

名称	概要
少量の血液でがん発	●開発・提供者:PFDeNA
見するシステム開発	●分類:医療
へ ディープラーニ	●内容:PFDeNA は国立がん研究センターとともに、少量の血液か
ング活用、DeNA が	らがんの有無を判定するシステムの開発を目指して研究を始める
PFN と共同研究	と発表した。ディープラーニングによって胃がんや肺がん、乳が
	んなど 14 種のがんを判定する仕組みを作り、2021 年の事業化を
	目指す。

名称	概要
AI を活用した買い	●開発・提供者:ユニクロ
物アシスタントサー	●分類:チャットボット
ビス「UNIQLO IQ」	●内容:ユニクロは、ユニクロアプリ上で起動するお買い物アシ
を公開	スタントサービス「UNIQLO IQ」を公開している。
	「UNIQLO IQ」は、AI を活用したチャット自動応答システムで、
	買い物の一連の流れをサポートする。ユーザーは、自分専用のお
	買い物アシスタントとして、店舗・オンラインストアを問わず、
	新しいチャットショッピングを体験できる。

名称	概要
ファッションアプリ	●開発・提供者:チームラボ、ストライプインターナショナル
「メチャカリ」に	●分類:チャットボット
"パーソナライズス	●内容:チームラボは、ファッションサブスクリプションサービ
タイリング AI チャ	ス「メチャカリ(MECHAKARI)」アプリの新機能として、AI を活
ットボット"を導入	用したチャットボット機能を導入している。
	チャカリのアプリ内には、常時 10,000 種類以上の洋服が提供さ
	れている。チャットボットの導入により、これらアイテムの中か
	ら、お客様に合わせた提案が可能になった。AI の活用による質の
	高いパーソナライズスタイリングで、お客様のコーディネートに
	対するお悩みを解決し、サービスの更なる発展を目指す。

名称	概要
AI で顧客の声を約	●開発・提供者:日立製作所
1,300 種類に分類す	●分類:感性分析
る「感性分析サービ	●内容:日立製作所は、SNS やテレビ、新聞といったメディア情
ス」の提供を開始	報およびブログや口コミ情報などの会話記録などから、顧客の声
	を分類・見える化する「感性分析サービス」の提供を開始してい
	る。
	同サービスは、言語理解研究所の感性分析 AI である「AB スクエ
	ア」を活用し、分析に必要なデータを高精度に絞り込むフィルタ
	リング技術を日立製作所が新たに開発した。
	テキスト化されたメディア情報などから、企業や商品に対して抱
	かれている感情を高精度に分析、データの収集・分析・可視化か
	ら、絞り込み条件の自動メンテナンスといった運用保守までをト
	ータルで提供している。

名称	概要
機械学習を活用した	●開発・提供者:セプテーニ
運用レコメンドツー	●分類:レコメンド
ルを開発 コンサル	●内容:セプテーニは、機械学習を活用した運用型広告のアルゴ
タントの作業効率向	リズム解析および運用レコメンドツールを開発した。
上へ	本ツールは、広告の運用行動ログデータをもとに「各運用行動」
	が「広告効果」にどの程度影響を与えているかを機械学習により
	解析し、その上で広告効果を高める最適なアクションプランを予
	測、提案することができる。

名称	概要
電通グループ3社、	●開発・提供者:株式会社電通、株式会社電通デジタル、データ
バナーを自動生成す	アーティスト株式会社
る AI ツールを開発	●分類:広告
	●内容:電通グループ3社は、共同でAIを活用したバナーの自
	動生成ツールを開発した。
	過去に配信されたインターネット広告バナーの表現とクリック率
	実績を、ディープラーニングを用いて分析することで、パフォー
	マンスの高いバナーの効率的な生成に寄与する。本ツールでは生
	成したバナー候補群の中から特に優れた 10~20 案を利用するこ
	とを想定している。

名称	概要
マーケティングオー	●開発・提供者:ジーニー
トメーション	●分類:広告
「MAJIN」、機械学	●内容: ジーニーは、マーケティングオートメーションツール
習でスコアリング行	「MAJIN」に AI 技術を活用した新機能「AI スコアリング」を搭載
う機能追加	し、提供を開始している。
	本サービスを導入した企業は、手動による煩雑なスコアリング業
	務をすることなく、最新の CV 情報に基づき見込み顧客の購買や
	契約に対する関心度を可視化することができる。

名称	概要
コカ・コーラの AI	●開発・提供者:ブレインパッド、コカコーラ
解析プロジェクト、	●分類:広告
ブレインパッドが支	●内容:ブレインパッドは、日本コカ・コーラのプロジェクトの
援 飲料の消費シー	一環として、SNS の投稿画像を AI で解析し、ドリンクの消費シー
ンの把握目指す	ンを分析する取り組みを実施した。
	SNS 上の投稿画像から、特定ブランドのドリンクが写った画像の
	みを抽出し、一緒に撮影されている物体や背景、人物の表情など
	から、消費者がそのドリンクを飲むシチュエーションや一緒に食
	べられている食料品などを解析した。

名称	概要
AI がリアルタイム	●開発・提供者:データセクション
でスパム投稿を監	●分類:スパム監視
視・削除!データセ	●内容:データセクションは、ディープラーニング技術を活用し
クションが新ソリュ	たスパム投稿監視ソリューションを開発、提供している。
ーションをリリース	ディープラーニング技術を用いた同社独自開発のスパム判定エン
	ジンにより、曖昧なニュアンスの判定を実現し掲示板や口コミサ
	イトなどで NG ワードリストとのマッチングでは対処しきれない
	スパム投稿にも対応することができる。
	ポリシーに合わせて判定エンジンを学習することも可能である。

名称	概要
AI を活用した「テ	●開発・提供者:株式会社電通
レビ視聴率予測シス	●分類:広告
テム」を提供開始	●内容:電通は、AI を活用したテレビ視聴率予測システム
テレビ CM 素材の高	「SHAREST_RT」を開発、提供している。
度運用が可能に	同システムは、「過去の視聴率データ」「番組ジャンル」「出演
	者情報」「インターネット上のコンテンツ閲覧傾向」などを教師
	データとするディープラーニングによるモデル構築を行ったもの
	で、放送前1週間のテレビ視聴率を予測できる。

1.2.プラットフォームの事例

図表 1-2 プラットフォーム事例・オーバービュー

名称	概要
大規模データ分析お	●開発・提供者:NVIDIA
よびマシンラーニン	●分類:プラットフォーム
グ向け、オープンソ	●内容:分析、機械学習を GPU により高速で処理するライブラリ
ース GPU アクセラレ	一群がセットになったプラットフォーム。CPUとNVIDIA DGX-2を
ーションプラットフ	比較すると 50 倍高速化できた。
オーム	クレジットカード詐欺の予想や、小売り在庫の予測や顧客の購入
	行動の把握など高度で複雑なビジネスの解決に有用。

名称	概要
Amazon SageMaker	●開発・提供者: Amazon
	●分類:クラウドサービス
	●内容: AWS によりフルマネージドされるエンド・ツー・エンド
	の機械学習サービスである。
	Notebook で記述したモデルをそのままデプロイ可能である。
	組み込みアルゴリズム、フレームワーク、Docker イメージを使用
	したカスタムアルゴリズムが使用可能である。

名称	概要
Azure Machine	●開発・提供者:Microsoft
Learning	●分類:クラウドサービス
	●内容: Azure によりフルマネージドで提供される機械学習サー
	ビスである。
	組み込みアルゴリズムが豊富なのことが特徴である。
	Azure Machine Learning Studio というオーサリングツールも提
	供されており、これを使用するとコードを記述せずにビジュアル
	な操作でアイデアをデプロイすることができる。

名称	概要
Google Cloud	●開発・提供者:Google
Machine Learning	●分類: クラウドサービス
Engine	●内容:GCP によりフルマネージドで提供される機械学習サービ
	スである。
	AWS や Azure が提供する機械学習サービスとの違いは学習、推論
	処理に CPU、GPU のみではなく TPU も利用できる点にある。
	他のサービスになるが学習済みモデルを使用した用途向けの API
	も提供されている。

1.3.機械学習/ディープラーニングライブラリの事例

図表 1-3 ライブラリ事例・オーバービュー

名称	概要
TensorFlow	●開発・提供者:Google
	●分類: フレームワーク
	●内容:Google が開発しオープンソースで公開している機械学習
	(ニューラルネット)に用いるためのソフトウェアライブラリであ
	る。顔認識、音声認識やリアルタイム翻訳など様々な分野での利
	用が想定されている。

名称	概要
Keras	●開発・提供者:François Chollet
	●分類:ラッパー
	●内容:Keras は Python で書かれた高水準のニューラルネットワ
	ークライブラリである。ユーザーフレンドリー、モジュール性、
	拡張性を重視し迅速な実験を可能にすることに重点を置き開発さ
	れ、アイデアから素早くプロトタイプを作成することが可能であ
	る。
	CNN と RNN の両方、およびこれらの 2 つの組み合わせをサポート
	している。

名称	概要
PyTorch	●開発・提供者:Facebook
	●分類:ラッパー
	●内容:リバースモードの自動微分という手法を利用して、ニュ
	ーラルネットワークがゼロラグもしくはオーバーヘッドで任意に
	動作する方法を変更できる。Define by Run という設計思想に基
	づいて開発されており、ニューラルネットワークの構成を実行時
	に行うため動的な変更への対応が可能である。

名称	概要
MXNet	●開発・提供者:Apache Software Fundation
	●分類:ラッパー
	●内容:CNNとLSTMサポートした深層学習フレームワークとして
	開発され、現在では R-CNN や DQN での使用例もある。スケーラビ
	リティに優れているため、クラウドサービスと組み合わせて使用
	する構成に向いている。
	対応言語が豊富である。軽量化つ可搬性が高いため、iOS や
	Android での使用にも向いている。

名称	概要
Deeplearning4J	●開発・提供者:Deeplearning4J
	●分類:フレームワーク
	●内容: Java 向けのディープラーニングのライブラリである。
	Hadoop/YARN 及び Apache Spark と組み合わせることで分散処理が
	可能である。
	有償サポートを提供する企業が存在する。
	テキスト処理、自然言語処理での事例が多い。

名称	概要
Theano	●開発・提供者:モントリオール大学
	●分類:フレームワーク、算術ライブラリ
	●内容: Theano はディープラーニングのライブラリであるが、行
	列演算」「C++、CUDAのソースコードを生成してコンパイル」
	「自動微分」「GPU 処理」といった機能は Python で標準的に使用
	される計算ライブラリである Numpy よりも高速な場合があるため
	スクラッチでライブラリを実装する場合に使用されることもあ
	る。
	現在は開発を終了している。

名称	概要
Chainer	●開発・提供者:Preferred Networks
	●分類:ラッパー
	●内容: Chainer は Python で深層学習のプログラムを実装する際
	に使用できるフレームワークである。日本企業が開発しているこ
	ともあり日本国内を中心として利用が多い。
	ニューラルネットワークの構築と計算を同時に行う Define-by-
	Run 方式である。

名称	概要
DyNet	●開発・提供者:カーネギーメロン大学
	●分類:フレームワーク
	●内容:バックプロパゲーションに必要なデータ構造をプログラ
	ムの実行時に動的に生成する Define by Run を採用しており、
	recurrent/recursive neural network系の実装が必要となる自然
	言語処理等で効果を発揮する。
	ミニバッチの隠蔽機能がある。

名称	概要
Sonnet	●開発・提供者:DeepMind
	●分類:ラッパー
	●内容: TensorFlow をニューラルネットに特化してラッパライブ
	ラリとして実装したものである。TensorFlow のコードと混在する
	ことが可能なので、細かい処理が必要なか s とは TensorFlow、そ
	れ以外は Sonnet で記述するという使い分けが可能である。
	計算グラフの構成が特徴的である。

名称	概要
Spark ML(MLlib)	●開発・提供者:Apache
	●分類:フレームワーク
	●内容:インメモリ分散処理基盤の Apache Spark を中心とした
	機械学習ライブラリである。Apache Sparkを基盤とするため、大
	量のデータを扱う用途に向いている。
	Spark.mllib 内の RDD に基づいた API はメンテナンスモード(将来
	的には非推奨)であり、主要な API は DataFrame となっている。

名称	概要
Mahout	●開発・提供者:Apache
	●分類:フレームワーク
	●内容:分散処理フレームワークの Hadoop を中心とした機械学
	習ライブラリである。
	MapReduce で実装された、クラスタリングやレコメンドなどの機
	械学習アルゴリズムが提供されている。

名称	概要
gensim	●開発・提供者:Radim Řehůřek
	●分類:フレームワーク
	●内容:トピック分析をおこなうためのライブラリである。
	LSI、LDA、DTM などのトピックモデルが組み込まれている。

名称	概要
Pandas	●開発・提供者:The PyData Development Team
	●分類:ライブラリ
	●内容:直接的な機械学習のライブラリではないが、機械学習で
	重要となるデータセットの解析、処理といったデータの前処理の
	ためのライブラリである。
	Pandas と類似のライブラリとして NumPy があるが、Pandas では
	列ごとに異なるデータ型を扱えるのが特徴である。

名称	概要
Neural Network	●開発・提供者: Sony
Libraries	●分類:フレームワーク
	●内容:ソニーが自社で培ってきた AI、ディープラーニングのコ
	ア部分をオープンソースとして公開したものである。
	後発のライブラリであるため、CUDA・cuDNN の高速化、計算グラ
	フ実行のオーバーヘッド削減、インプレース実行とメモリプール
	を利用したメモリ共有といった実装の最適化をおこなっている。

名称	概要
Caffe2	●開発・提供者:Facebook
	●分類:フレームワーク
	●内容: Caffe2 は Caffe の流れを組むディープラーニングフレー
	ムワークで、Caffe の開発者が Facebook に移籍したことで
	Facebook で開発が進められている。
	前身である Caffe のモデルを移植することも可能である。

1.4.八一ドウェア実装の事例

図表 1-4 ハードウェア実装の事例・オーバービュー

Ē	
名称	概要
Tensor Core	●開発・提供者:NVIDIA
	●分類: GPU
	●内容: Tensor Core は、Volta マイクロアーキテクチャで初め
	て搭載された行列演算を実行するための専用のプロセッサで、製
	品としては GV100 に搭載されている。
	従来の CUDA では推論に使用していたが、Volta では推論と学習の
	両方に対応した Tensor Core という新しい演算コアを搭載してい
	るのが特徴である。

名称	概要
Radeon Instinct	●開発・提供者:AMD
	●分類: GPU
	●内容: Radeon Instinct は AMD が開発している AI 向けの製品
	で、現在はVega10というアーキテクチャを採用している。
	NVIDIA の CUDA と同じような ROCm という開発ツール群を提供して
	おり、このツールから TensorFlow や Caffe2 が利用できる。
	次世代アーキテクチャとなる Vega20 も発表されており、INT4 演
	算のサポートや FP64 演算性能が Vega10 比で 8 倍となるなど大幅
	な機能拡張が予定されている。

名称	概要
Arm ML	●開発・提供者: Arm
	●分類:ニューラルプロセッサ
	●内容: Arm ML は Arm が開発しているニューラルプロセッサで
	ある。モバイル、組み込み向けの製品に搭載されることを前提と
	しており、ワットパフォーマンスが高いのが特徴である。
	また、他のニューラルプロセッサには無い特徴として、RNNや
	LSTM といった CNN 以外のネットワークモデルにも対応する。

名称	概要
Arm OD	●開発・提供者: Arm
	●分類:
	●内容: Arm OD は Arm が開発しているオブジェクト認識専用の
	プロセッサである。監視カメラで群衆動画から顔検知を行うなど
	の用途に使用する。
	Arm ML と組み合わせた構成も可能である。

名称	概要
A12 Bionic	●開発・提供者:Apple
	●分類:ニューラルプロセッサ
	●内容: Apple が開発しているニューラルネットプロセッサを搭
	載する CPU である。前世代の A11 では搭載するニューラルネット
	プロセッサが 1 個であったが A12 では 8 個搭載し、性能では A11
	比で9倍となっている。
	Apple の機械学習フレームワークの CoreML から利用できる。

名称	概要
TPU	●開発・提供者:Google
	●分類:ニューラルプロセッサ
	●内容: Google が機械学習向けに特化した ASIC である。第一世
	代の TPU は演算制度の制約から推論処理専用であった。第二世代
	の TPU は 16 ビット精度の演算器を搭載したため学習処理にも使
	用することができるようになっている。
	Google のクラウドサービスの GCP で利用することができる。

名称	概要
Edge TPU	●開発・提供者:Google
	●分類:ニューラルプロセッサ
	●内容: TPU のエッジ側での使用を想定したニューラルプロセッ
	サである。演算制度の制約から推論処理のみで使用できる。
	TensorFlow Lite から利用可能である。

名称	概要
Neural Compute	●開発・提供者:Intel
Stick 2	●分類:ニューラルプロセッサ
	●内容: Intel が買収した Movidius の Myriad X VPU を搭載した
	AI アクセラレーターである。前世代の Neural Compute Stick と
	比較して8倍の性能を実現している。
	OpenVINO から利用可能である。
	USB デバイスの形態で提供されるため、プロトタイプ開発時にシ
	ングルボードコンピュータとの組み合わせで使うということも可
	能である。また、USBデバイスであるため同時に複数使用するこ
	とで推論性能を向上させることも可能である。

2. 事例詳細

1.5.ビジネス対象の事例

1.5.1. ビジネス応用事例・オーバービュー

(1)AI パーソナライズ学習の atama plus、2 週間受講でセンター得点率が 50%向上

も 3 カ月で導入は 100 教室超える

名称	AI パーソナライズ学習の atama plus がシードで 5 億円調達、2 週間受			
>D 401.	講でセンター得点率が 50%向上も 3カ月で導入は 100 教室超える			
分類	教育・学習支援			
開発・提供者	atama plus			
会四 libi 然	https://thebridge.jp/2018/03/atama-plus-got-fundraising-500m-			
参照 URL 等	yen-from-dcm			
	AIによる教育プログラム「atama+」は、学生の得意、苦手、目標、過			
	去の状況を診断し、パーソナライズされた教材をひとりひとりに対し			
	て提供する。これを講義、演習、復習のルーティーンワークに乗せて			
	 学習することで基礎学力の習得に必要な時間を半減させることを狙			
	j.			
	Product atama+			
	目標選択画面 レコメンドされた教材			
	(「2次関数のグラフ」の講義)			
	12規約のグラフ - 課数 初らら 目標を選ぶ ************************************			
内容等	中学数で すべて記さる まる日本の y = αx²のグラフを x方向にp平行移動し、すれば サラロの成形器 0m ************************************			
	◆学売を成 シ			
	Reg on			
	© 25/880/97 25/880/25 ? □ 25/80/25			
	② 2288008A - 80- ③ 2288008A - 80-○ ○ 2288008A - 80-○ ○ 228802A784A 080 ○ 228802A784A			
	DERFO.			
	教材の特徴として生徒の「つまづき」に注目している点が挙げられ			
	る。例えば特定の定理や法則を学習する際にその内容を分解し、それ			
	ぞれの習熟度を確認する。特に不得手な分野が特定されたらその箇所			

まで戻って集中的に学習することで、従来かかっていた学習時間を短 縮することに成功している。学生にこのプログラムを2週間、毎日1 時間ほど取り組んでもらった結果、センター試験(模試)の結果が平 均して50%ほど改善した。

atama+で学習した生徒達

atama+

センター試験模試(数IA)

K.K君(神奈川、高2) 43点 → 83点 19時間45分学習

S.Dさん (石川、高3) 59点 → 81点 13時間0分学習

D.N君(長崎、高1) 45点 → 83点 9時間40分学習

S.K君(兵庫、高1) 37点 → 78点 23時間50分学習

2018年センター試験本番(数IA)

冬期講習(約2週間)受講生の「得点伸び率」の平均+50.4% 🥕

さらに不明点のみを自主学習するスタイルを採用しているため、学習 塾などで指導にあたる講師の役割も変化する。従来ティーチング(教 材習得)とコーチング(学習指導)の両方に取り組まなければならな かったが、atama+がティーチング箇所を担当するので、講師は学習指 導に専念ができるようになる。また教材は常に生徒の習熟状況を講師 に共有して不明箇所を持った生徒を可視化してくれるため、効率的な 指導が可能になる。

本サービスの背景としては、こうして基礎学力習得にかかる時間を半 減させ、より社会で生きる力、例えばディスカッションだったり自分 で考える能力を伸ばすための学習に時間を回すことができるという狙 いがある。

学習塾などに導入する B2B モデルで、生徒は基本的に個人最適化され た教材を自習するスタイルになる。開始3カ月で100教室ほどの導入 が進んでおり、大手教育サービスを提供するZ会エデュースや学研塾 ホールディングス、駿台教育センターなどの事業者がテストフェーズ としてこの教材を採用しているということだった。

□ 「つまずき」に注目する。

特徴等

- □ センター試験(模試)の結果が平均して50%ほど改善した。
- □ 基礎学力習得にかかる時間を半減させ、より社会で生きる力、例え

	ばディスカッションだったり自分で考える能力を伸ばすことを狙
	う。
	B2B モデルで提供する。
備考	

(2) 物理が分からない生徒には数学の問題も提示 タブレット型 AI 教材「atama+」が

宿題アプリを公開

	物理が分からない生徒には数学の問題も提示 タブレット型 AI 教材
名称	「atama+」が宿題アプリを公開
分類	教育・学習支援
開発·提供者	atama plus
参照 URL 等	http://thebridge.jp/2018/09/atama-plus-at-home
参照 URL 等	http://thebridge.jp/2018/09/atama-plus-at-home タブレット型 AI 教材「atama+」は、塾の生徒向けに「atama+for student」、講師向けに「atama+for coach」を提供しており、現在、Z 会エデュースや験台教育センターなど学習塾を通じて、全国の中学生・高校生に利用されている。 「「「」」」」」 「「「」」」」 「「「」」」」 「「「」」」 「「「」」」 「「「」」」 「「「」」」 「「「」」」 「「「」」」 「「「」」」 「「「」」 「「「」」 「「「」」 「「「」」 「「「」」 「「「」」 「「「」」 「「「」」 「「「」」 「「「」」 「「」」 「「「」」 「「」」 「「」」 「「「」」 「「「」」 「「「」」 「「「」」 「「「」」 「「」」 「「「」」 「「「」」 「「」」 「「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」 「「」」 「「」 「「」 「「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「 「
	また、これまで提供してさた「数字」や「英文伝・語伝」に加え、同 校生向けに「物理」「化学」教材をリリース。「物理」では、生徒が
	ひまずいた箇所によって「数学」の講義を出すなど、教科間をまたが
	った学習が可能になる。
特徴等	□ 塾内での学習状況に応じて教材(宿題)を最適化する。

	「つまずき」に基づき、教科をまたがった学習を提示する。
備考	

(3) タブレット型 AI 教材「atama+」、合格しそうな生徒を人工知能で予測して教え

てくれる機能を追加

	カゼレル 1 刑 AI 粉牡「」、「」、
名称	タブレット型 AI 教材「atama+」、合格しそうな生徒を人工知能で予
	測して教えてくれる機能を追加
分類	教育・学習支援
開発・提供者	atama plus
参照 URL 等	http://thebridge.jp/2018/11/atama-plus-new-feature
	タブレット型 AI 教材「atama+」では、生徒の学習進捗をもとに「合
	格しそうなタイミング」を AI でリアルタイムに予測判定する技術を活
	用し、塾講師向け「atama+ for coach」のアラート機能を拡張をし
	た。
	Pad ♥ 2022 1485.■)
	atama+ atama+ coach 電腦 ログアクト
	bmA10025
	* 短期目標を達成しました!図っていたらサポートしましょう
	 基礎数字・相似な図形の面積と体積 ⇒ 演習 問題 (2/22 1分45秒) ・相似な図形の面積と体積の合格関近です!
	本語の数の利用の合格開近です! 本語の数の利用
	●
内容等	数学A・三角形の重心 ● 講義 解説 (4/4) 0分0秒
	●不正解的に解説をきちんと見ていない可能性があります (2013) 基礎数学・平行線と比 → 演習 問題 (2/2) 1分50秒
	◆不正解時に解説をきちんと見ていない可能性があります
	atama+ for coach はタブレット型 AI 教材 atama+の塾講師向けアプリ
	である。生徒向けのタブレット型 AI 教材「atama+ for student」の生
	徒の集中度や学習の進捗を AI がリアルタイムで解析した上で、講師が
	いつ、どんな声かけをすると効果的かをレコメンドしてくれる。
	講師向けアプリではこれまで「(特定の単元を)合格しました!」
	「解説をきちんと見ていない可能性があります」「問題に標準の2倍
	以上の時間がかかっています」といったアラートが通知されていた。

	今回の機能拡張ではこれらに加え、生徒の過去および現在の情報を元
	に、特定単元の合格間近な生徒についても講師に通知をしてくれるよ
	うになる。
特徴等	□ 合格しそうなタイミング」を AI でリアルタイムに予測判定する。
備考	

(4) 貧困による教育格差の解消目指す AI タブレット教材「Qubena」が NPO 向け無

償提供プログラムを開始

-	
 名称	貧困による教育格差の解消目指す AI タブレット教材「Qubena」が NPO
,	向け無償提供プログラムを開始
分類	教育・学習支援
開発・提供者	Qubena
参照 URL 等	http://thebridge.jp/2018/07/qubena-free-program-for-npo
	AI 型タブレット教材「Qubena」は、生徒ひとりひとりの学習中の操作
	ログや計算過程、回答データを分析することでつまずく原因となって
	いるポイントを特定し、その生徒が解くべき問題へと自動的に誘導し
	てくれる学習教材である。同社が運営する学習塾では、中学校数学の1
	学年分の学習範囲を平均32時間で修了しており、従来の学校教育の7
	倍の速度に匹敵するとしている。
内容等	### ### #############################
	現在、日本では7人に1人の子どもたちが相対的貧困状態にあると言
	われており、経済的な理由により通塾や進学をあきらめるなどの教育
	格差が社会問題となっている。今回、教育格差解消に取り組む NPO 法
	人へサービスを無償提供するプログラムを開始した。
	プログラム第1弾として、NPO法人キッズドア 東北事業部が運営する「タダゼミ仙台」に対して2018年7月から2019年3月末まで無償提供を実施。プログラムでは、週1コマの数学の授業と自習室での学習

	で Qubena が利用される。 Qubena の得意とするアダプティブラーニング	
	で生徒のつまずきポイントを見つけ、高い学習効果で苦手単元の解消	
	を図る。	
特徴等	□ 回答結果だけではなく、操作ログや計算結果を分析することで、「つ	
	まずき」の原因となっているポイントを特定する。	
	□ 特定した「つまずき」のポイントにもとずき、生徒が解くべき問題	
	へと自動的に誘導する。	
備考		

(5) カーネギーメロン大学、米国初の人工知能の学士課程を新設

名称	カーネギーメロン大学、米国初の人工知能の学士課程を新設
分類	教育・学習支援
開発・提供者	カーネギーメロン大学
参照 URL 等	http://thebridge.jp/2018/05/carnegie-mellon-university-starts-first-ai-degree-program-in-u-s
参照 URL 等	first-ai-degree-program-in-u-s カーネギーメロン大学は今月 10 日、人工知能の学士号課程を開始することを発表した。人工知能の学士号は米国では初の試みであると同大学はいう。理学士課程での最初のコースは今年の秋に始まる予定だ。 US News and World Report の調査が3月に発表した内容によると、カーネギーメロン大学は人工知能を学ぶ上で米国でもっとも良いコンピュータサイエンス学部をもつ大学であり、その後にはマサチューセッツ工科大学、スタンフォード大学、カリフォルニア大学バークレー校が続く。 新しい教育課程を率いるリード・シモンズ教授は、すでにカーネギーメロン大学では10あまりの人工知能関連コースがあり、今後さらに増える予定であるという。 これまで1300万回以上もダウンロードされた人気のオープンソースフレームワーク TensorFlow もプロジェクトのために学生が利用できるようにすると同時に、カーネギーメロン大学のAI プログラムはより根本的な知識を教えることに注力する。 また、コースワークには数学、統計、コンピューターサイエンスのほか、機械学習、コンピュータモデリング、ニューラルネットの仕組みなどが含まれる。 シモンズ教授はVentureBeat の電話取材に対して、「私たちは学生に
	ただツールを使えるように訓練するのではなく、自分自身でツールを 開発できるように科学を理解するように訓練します。コースの軸とな るのは、彼らが社会に出たときに、ただ使う側ではなく次の TensorFlowをつくれるように仕組みを理解することです」とコメント している。

	入学者数は、2年・3年・4年次の学生に関しては100名以下、また毎年の新入生は30-35名ほどに制限される予定であると、コンピュータサイエンス学部のブログで発表された。
	AI のプログラムは、School of AI をつくった Udacity や Andrew Ng 氏による Coursera のプログラムなど、オンライン学習サイトでも人気が増している。だがシモンズ教授は、政府や民間企業の多く、また人々の生活で AI の適用が今後増すにつれて、さらに多くの大学が AI 課程を提供し始めるだろうと考えている。
特徴等	□ 米国で最も良いコンピュータサイエンス学部をもつカーネギーメロン大学に人工知能の学士課程を新設された。 □ ツールを使う側ではなく、新しい重要な(TensorFlowのような)ツールを作れる仕組みを理解することを目指す。
備考	

(6) 特化のプログラミング学習サービス「Aidemy」が正式版を公開、エンジニアのキ

ャリアアップ向け学習を提供

名称	特化のプログラミング学習サービス「Aidemy」が正式版を公開、エン
	ジニアのキャリアアップ向け学習を提供
分類	人材育成(社会人研修)
開発・提供者	Aidemy
参照 URL 等	https://thebridge.jp/2017/12/aidemy-release
	エンジニア向け AI プログラミング学習サービス「Aidemy」は、オンラ
	インで python の基礎からディープラーニングまでを学べる AI 特化型
	プログラミング学習サービスである。全 20 講座以上の AI・ブロックチ
	ェーンの講座が受講できる。インターネットブラウザ上の仮想環境を
	利用するため利用者の環境構築は不要。出題された演習問題に回答、
	自動採点によりフィードバックを受けることができる。
内容等	### PARCHES STATE
	本サービスを提供するアイデミーでは、本サービス「Aidemy」の他、
	コードレビューや質問チャットなどの機能がセットになった
	「AidemyPremiymPlan」や法人用プランも公開している。
	同社では企業向けの AI 解析や受託開発サービスを提供しており、これ
	らで得た知見などもスクールに活かしていく方針である。
特徴等	□ 環境構築不要で気軽にはじめられる部分が強みである。
備考	

(7)中国の AI エドテックスタートアップ 17ZUOYE(一起作業)

	中国の AI エドテックスタートアップ 17ZUOYE(一起作業)、シリーズ
名 称	Eで2.5億米ドルを調達―シンガポール政府系 Temasek Holdings がリ
	— ド
分類	教育・学習支援
開発・提供者	Sunny Education (合煦)
参照 URL 等	https://ucenter.17zuoye.com/
	「17ZUOYE」2012 年 12 月に設立された。オンラインで教師、学生、保
	護者の3者が交流できる学習プラットフォームである。オンライン上
	で教師が出した課題や模擬テストに学生が解答すると、即時に学生と
	保護者にフィードバックが届く仕組みになっている。この教師と学
	生、保護者間のやりとりを無料で提供することで、「17ZUOYE」はサー
	ビスへのアクセス数を稼ぐ狙いがある。収益源は、主に他社が作成し
	たオンラインテキストや模擬試験の販売収入と広告収入の2つとなっ
	ている。
内容等	一起 NA PRIME XFRO NARO L学习成为美好体验 APPF®
	17ZUOYE の補習用テキストブックは、ビッグデータや人工知能 (AI)
	を駆使した毎日の宿題データに基づき、生徒一人ひとりの学力に合わ
	せた質の高いコンテンツを提供している。教師、生徒、そして保護者
	に、全教科にわたる宿題の解き方はもちろんのこと、授業前の準備や
	個々に合わせた学習支援を行っている。また、ホームワークという枠

	を超え、補習用テキストブックで自主学習をしたり、ライブストリー
	ミング経由の個別指導コースへの参加も可能である。
	同サービスは、2016年9月の時点で中国国内8万ヵ所の小中学校に普
	及している。教科は、国語、数学、英語の3科目であるが、2017年で
	登録ユーザーは 5000 万人を突破した。
	デロイト中国の最新研究報告では、中国の教育業界の市場規模は5年
	以内に倍増すると示していた。2015年の市場規模は1.6兆人民元(27
	兆円) であり、2020 年には3兆人民元(50.5兆円) になると予想され
	る。オンライン教育業界は、市場の拡大が見込まれ、収益性も高い市
	場だと認識されている。
	□ ビッグデータや AI を駆使した毎日の宿題データに基づき、生徒一
#+: /u/ <i>b</i>	人ひとりの学力に合わせた質の高いコンテンツを提供している。
特徴等	□ 補修用テキストブックによる自己学習のみでなく、ライブストリー
	ミングを使用した個別指導コースへの参加も可能である。
備考	

(8) チャットボットスタートアップと提携してコース選択をアドバイス

名称	チャットボットスタートアップと提携してコース選択をアドバイス
分類	教育・学習支援
開発・提供者	Udacity Passage AI
参照 URL 等	https://www.udacity.com/
参照 URL 等	https://www.udacity.com/ Udacity は、2012年にローンチし人気とともに提供する授業の数が急増している。毎年16万人もの生徒が Udacity のオンラインコースに「入学」しているという。 「八学」しているという。 「Think Forward Build Sellis for today, tornorrow, and beyond, Education to future proof your career. Obscover your learning path in our schools. Suprison Programming Authoromous Systems Supr
	Passage AI が開発した自然言語処理を用いたチャットボットを通じて、Udacityのサイトを訪問する生徒が適切なコースを見つけ簡単に入学できるようにアシストするというアイデアだ。Udacityのサイト訪問

	者の 5%に当初テストを実施したところ、クリックスルー率が 40%上昇
	したと Passage AI の CEO Ravi Raj氏はいう。
特徴等	□ チャットボットを使用して生徒が適切なコースを見つけ簡単に入
	学できるようにアシストする。
備考	

(9) AI で煩雑な入学手続きにつまづいているかどうかを判断、手続きをサポート

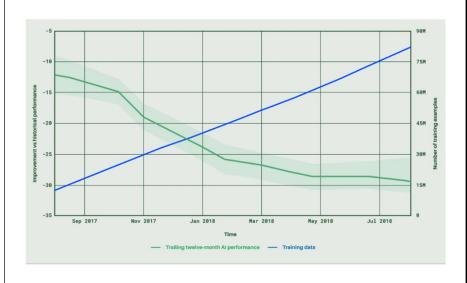
Ī	
名称	AI で煩雑な入学手続きにつまづいているかどうかを判断、手続きをサ
	ポート
分類	教育・学習支援
開発・提供者	ジョージア州立大学
州光	Admit Hub
参照 URL 等	https://www.gsu.edu/
	アメリカの大学の多くでは、入学申請をする際に経済援助の申し込
	み、高校の成績の提出、学生ローンの申し込み、授業料の支払いなど
	 様々な手続きが必要になり、特に低収入の学生にとっては煩雑な手続
	きになりがちだ。
内容等	Georgia State Ulfiversity Research Admissions Research Admissions Research Admissions Research Admissions Research Admissions Research Admissions Research And Teaching With An Impact At The College of Education & Human Development READMORE NOW TO APREV VIRTUAL TOUR CAMPUS VISIT COST AND AID T 2 1 た 問題意を拘っていた ジョージア州立大学は AI ベースのメッセー
	こうした問題を抱えていたジョージア州立大学は AI ベースのメッセー
	ジングプラットフォーム AdmitHub と提携して、新入生候補の人々への
	サポートを開始した。
	 入学許可手続きに必要なタスクの進捗度合いを分析して、そのユーザ
	一が支援が必要かどうか、どこでつまづいているのかを判断する。そ
	の分析結果に基づいて、Admit Hub が作る会話システム Pounce が、パ
	ーソナライズされたテキストメッセージを生成するというものであ
	る。また、自然言語処理・生成を使って、24 時間一般的な問い合わせ
	に対してもスムーズに回答できるようになっている。これはディープ

-	
	ラーニングのアルゴリズムを使っているため、生徒とのやりとりが増
	えれば増えるほどスマートになっていく。
	実際、Pounce による支援を受けた学生は、入学許可手続きに必要なタ
	スクを完了する、その後入学する確率が高まっているという。入学前
	という段階から、積極的に候補生に働きかけてサポートを提供すると
	いうプロアクティブなアプローチが新しいと注目を集めている。
特徴等	□ AI を通じて大学の入学申し込み手続きを手助けする。
備考	

(10) 誰でも深層強化学習のスキルを身に付けて活用できるための教育リソース

「Spinning Up」を OpenAI が発表

┃ ┃名称	誰でも深層強化学習のスキルを身に付けて活用できるための教育リソ
	ース「Spinning Up」を OpenAI が発表
分類	人材育成(社会人研修)
開発・提供者	0penAI
参照 URL 等	https://spinningup.openai.com/en/latest/index.html
	人工知能を研究する非営利団体にイーロン・マスク氏らが設立した
	OpenAI がある。AI 技術を理解するためには機械学習の知識を身に付け
	る必要があるが、特に深層強化学習を理解して活用することが不可欠
	である。OpenAI では、深層強化学習を学んで誰もが活用できるように
	するための教育リソース「Spinning Up」を公開した。
	Docs • Welcome to Spinning Up in Deep RL! Q Edit on GitHub
	OpenAI Spinning Up OpenAI OpenAI Spinning Up OpenAI
	Welcome to Spinning Up in Deep RL!
内容等	USER DOCUMENTATION Introduction Installation Algorithms Running Experiments Experiment Outputs Plotting Results INTRODUCTION TO RL Part 1: Key Concepts in RL Part 2: Kinds of RL Algorithms Part 3: Intro to Policy Optimization
	RESOURCES User Documentation Splinning Up as a Deep RL Researcher
	Key Papers in Deep RL Exercises Benchmarks for Spinning Up Implementations O Code Design Philosophy Support Plan
	Spinning Up には、明解なサンプルコードや練習問題、参考文献、チュ
	ートリアルなどが含まれている。機械学習は必ずしも学習のハードル
	が低くはない。しかし、OpenAI のスカラシッププログラムやフェロー
	プログラムでの実績から、OpenAI は適切な道しるべや教育用リソース
	さえ整っていれば、全くの初心者でも短い時間で深層強化学習を使え
	るようになることを確信している。Spinning Up はこの考え方をもとに


	作られたリソースであり、2019年1月からスタートする2019 Winter
	Scholars Application Openのカリキュラムにも統合されている。
	Spinning Up は次の 5 つをコアコンポーネントとして作られている。
	 1. 強化学習の専門用語、アルゴリズムの種類、基本理論についてのイ
	ントロダクション
	2. 学習を通じて強化学習の研究分野で役割を担うようになることにつ
	いてのエッセイ
	3. トピックごとにまとめられた重要な論文リスト
	4. 以下の学習強化方法を実装するためのソースコードリポジトリ:
	VPG(Vanilla Policy Gradient)
	TRPO(Trust Region Policy Optimization)
	PPO(Proximal Policy Optimization)
	DDPG(Deep Deterministic Policy Gradient)
	TD3(Twin Delayed DDPG)
	SAC(Soft Actor-Critic)
	5. 軽いウォーミングアップ用の練習問題
特徴等	□ ディープラーニングについての全くの初心者を対象としている。
可以守	□ 現状では TensorFlow 向けの教材となっている。
備考	

(11) データセンターの空調自律制御

名称	データセンターの空調自律制御
分類	制御
開発・提供者	DeepMind and Google
↓ 参昭 IIRI 笙	https://deepmind.com/blog/safety-first-ai-autonomous-data-
多常 OKL 4	centre-cooling-and-industrial-control/
参照 URL 等	
	実装した簡単な方法の1つは、不確実性を推定することである。AI エージェントは、潜在的なすべての行動について、これが良い行動であるという確信を計算する。信頼性の低い行動は考慮から除外される。別の方法に2層検証がある。AI によって計算された最適な制御内容は、オペレーターによって定義された安全性制約の内部リストに対して検証される。命令がクラウドからデータセンタに送信されると、冷却システムは命令をそれ自体の制約のセットと照合する。この冗長検査は、AI による冷却制御が制約内にとどまり、オペレータが操作境界を完全に制御できることを保証する。

最も重要なのは、データセンターは常にコントロールされており、いつでも AI 制御モードを終了し旧来の制御システムにシームレスに移行できるということだ。

新しい AI 制御システムは数ヶ月間しか稼働していないにもかかわらず、平均で約30%の一貫した省エネルギーを実現しており、さらに改善が見込まれる。

この AI 制御システムは、データセンターのオペレーターさえ驚かせルような冷却方法を模索している。 Google のデータセンター運営者の一人、Dan Fuenffinger 氏は、次のように述べている。「AI が冬の条件を利用して通常の水よりも冷たい水を生産することを学ぶのは素晴らしいことでした。時間が経つにつれてルールは良くなりませんが、AI はそうしています」

特徴等

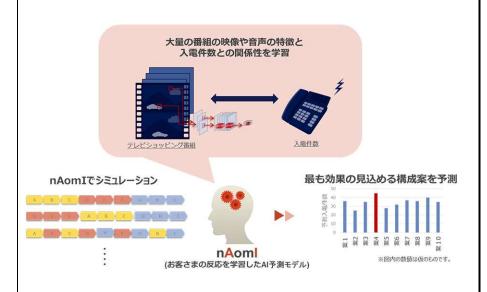
- □ 2016年の段階の機械学習ではそれ以前と比べて冷却効率を 40%改善したが、AI が予測から対策を提案しオペレーターが制御をおこなうものであった。それを AI が冷却システムの制御まで自動で行えるようになった。
- □ 異なる仕組みで、AIシステムが意図通りに動作しているか検証して おり、いつでも旧来の制御システムに移行できるようになってい る。

備考

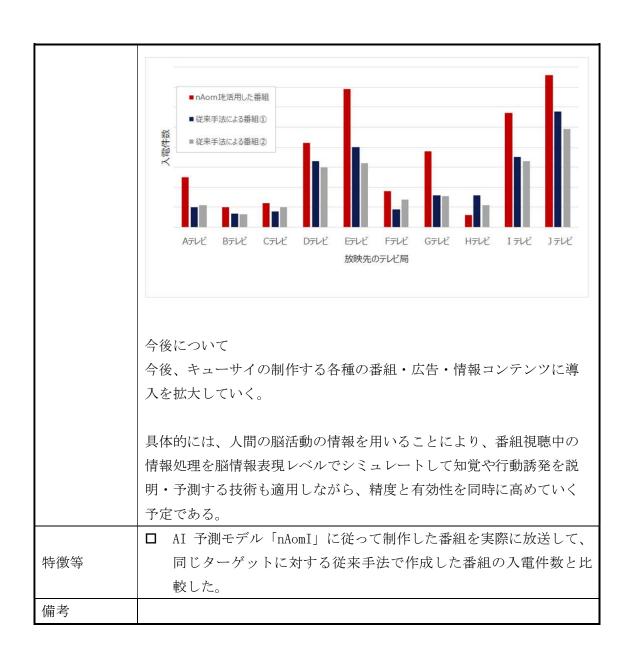
長期的にはビルの空調管理などデータセンター以外にも適用可能と考えられる。

(12) テレビショッピング番組の制作に人工知能を活用し効果を確認

5-71	
名称	テレビショッピング番組の制作に人工知能を活用し効果を確認
分類	広告
	キューサイ株式会社
開発・提供者	株式会社 NTT データ
	株式会社 NTT データ経営研究所
参照 URL 等	http://www.nttdata.com/jp/ja/news/release/2018/111300.html
	キューサイは、NTT データ、NTT データ経営研究所と共にテレビショッ
	ピング番組の内容からお客様の問い合わせ電話数(入電件数)を予測す
	るシステムを開発し、入電件数の増加を実現した。
	入電件数の予測には、NTT データグループが脳科学や機械学習分野の先
	端技術を取り入れながら人間の情報処理プロセスの定量的理解とその
	 ビジネス応用を進めている「脳情報解読技術」を利用した商品に興味
	│ │を持ち電話をかけるまでの反応を予測する AI モデル「nAomI」を構築
	して利用した。2018年7月に「nAomI」を活用して制作した番組を放送
	した結果、従来の制作手法で同時期に放送した番組より、お客さまか
	らの入電件数が 27.6%増加することが確認できた。「nAomI」を活用し
	た番組を制作することで、お客さまに楽しい体験を提供し、商品の魅
	力を分かりやすく理解いただける番組の制作が可能となり、入電件数
内容等	万を力がりくすく 全解がたたける番組の制作が可能となり、八電件数 を増やすことが期待される。
门谷寺	を増やりことが知付される。
	 今後、キューサイの制作する各種の広告・情報コンテンツに導入を拡
	大し、脳科学・人工知能技術活用による次世代マーケティングソリュ
	ーションとしての精度・有効性の向上も並行して実施していく。
	押用ようとが珍む中分
	概要および検証内容
	これまでキューサイが 2012~2018 年に放送してきた番組の映像とそれ
	に対するお客さまの反応情報(入電件数)を、機械学習技術にてモデ
	ル化した AI 予測モデル「nAomI」を構築した。
	機械的に生成した数千通りの構成をnAomIに読み込んで評価させ、最
	も入電件数が見込めると予測した1素材を実際に放送した。検証方法
	として、従来の制作手法で制作した番組(2番組)と nAomI が制作した


番組を、同時期・同放送局で放送し、お客さまからの入電件数を比較するという検証をおこなった。

検証の目的	nAomI による番組構成の最適化
検証時期	2018年7月
放送局	全国 14 のローカルテレビ局
対象ブランド	ひざサポートコラーゲン
効果検証指標	番組放送中~放送後の入電件数


検証結果

nAomI を活用して制作・放送した番組と従来の手法により制作・放送した番組(2素材)を比較・分析したところ、各平均入電件数において下記の違いが認められた。

従来手法による番組(1)との比較・・・平均29%増 従来手法による番組(2)との比較・・・平均24%増

2番組平均して 27.6%増という結果となった一因としては、数千通り もの構成案を生成・評価することで、従来の方法では実現に至りづら い意外性の高い案を制作・放送できた可能性が挙げられる。

(13) AI を搭載した「MICJET MISALIO 保育所 AI 入所選考」ソフト

名称	AI を搭載した「MICJET MISALIO 保育所 AI 入所選考」ソフト
分類	業務支援
開発・提供者	富士通株式会社
参照 URL 等	http://pr.fujitsu.com/jp/news/2018/11/12.html
内容等	富士通はAI 技術「FUJITSU Human Centric AI Zinrai(以下、「Zinrai」)」を搭載した自治体職員向け保育業務支援ソフトウェア「FUJITSU 公共ソリューション MICJET MISALIO 子ども子育で支援VI保育所 AI 入所選考」(以下、「MICJET MISALIO 保育所 AI 入所選考」)を開発し、2018年11月12日より提供を開始した。 保育所入所選考業務は各自治体が定める申請者の優先順位や兄弟同一入所希望などの複雑な条件にもとづき、全申請者の希望が最大限かなうよう自治体職員が試行錯誤により割り当てているが、選考が複雑化するため、きめ細かい要望に対応する新たな基準を採用しにくい、結果通知に時間を要するという問題があった。 「MICJET MISALIO 保育所 AI 入所選考」は、ゲーム理論と呼ばれる利害が一致しない人々の関係を合理的に解決する数理手法を応用した「Zinrai」の技術を用いて、優先順位に沿って可能な限り全員が高い希望をかなえられる千人規模の割り当てを数秒で導き出す。 背景地域によっては待機児童問題など保育をとりまく環境は依然として課題が多く、中でも、保育所入所選考業務は公平性を保つために年々複雑さが増しており、申請者の様々な事情を考慮し限られた入所枠に割り当てる作業には多くの人手と時間を要している。また、自治体によっては、検討を重ねても申請者の希望を満たせないケースも多くみられる。 入所選考の流れ 1.子ども子育で支援システムから入所選考に必要な情報を抽出 児童ごとの情報(保育所利用調整指数、希望施設、兄弟の入所希望など)や保育所の空き定員情報など、入所選考に必要な情報を子ども子

育て支援システムから「MICJET MISALIO 保育所 AI 入所選考」に取り込む。

2. AI 入所選考機能を実行

兄弟の入所の条件や希望保育所の優先順位などの申請者の多様な要望 や、自治体が定める保育所利用調整指数に基づく優先順位やきめ細か な基準に基づき、優先順位に沿って全員が可能な限り高い希望をかな えられる入所選考割り当てを数秒で導き出す。

3. 選考結果を可視化し、職員による住民への説明を支援 入所選考結果について、希望の保育所に入所できなかった場合などの 理由を説明する支援機能を有しており、保育所の空き状況や希望順 位、きょうだい入所条件に基づいて結果を説明できるため、住民から の問い合わせや窓口対応を円滑に行えるとともに、透明性の高い説明 責任を果たすことができる。

これまで、中核市などでは数千人規模の入所希望選考に延べ約 1000 時間費やしていたが、「MICJET MISALIO 保育所 AI 入所選考」では数秒で結果を数秒で導き出せる。

特徴等 ロ ゲーム理論を利害/優先順位の解決に適用している。 備考

(14) Doc.ai、Crestle.ai を買収し医師の AI 革命への参加を促す

分類 医粉 Doo	c.ai、Crestle.ai を買収し医師の AI 革命への参加を促す 療
BB 3.5 +B (II → Doc	
開発・提供者 Cre	c.ai estle.ai
┃参照 URL 等	tp://thebridge.jp/2018/11/doc-ai-acquires-crestle-ai-to-help-ysicians-join-the-ai-revolution
Doc AI スス Cre の くり Cre グ 在 る。 Poo ス 行 「ス 界 呼 Cre 月 学	c. ai では、自身の医療データをデータサイエンティストによる予測 モデル作成のためにシェアする人に仮想通貨を用いて支払うサービ を提供しているが、今回迅速な AI 展開プラットフォーム estle. ai を買収した。Doc. ai は Crestle とヘルスケア業界の人々 ためのトレーニングを組み合わせ、提出されたデータを基により多 の医師や医療関係者が予測 AI を作ることができるようにするつも である。 estle のプラットフォームは Jupyter Notebook でディープラーニン パッケージをワンクリック展開するために作られたものであり、現 11,000 人のデータサイエンティストと AI の実践者が使用してい

Crestle と Doc. ai の両者ともが Fast. ai と強いつながりを持っている。同社はプログラマーがもっとディープラーニングにアクセスしやすいようにするという目的に打ち込んでいるスタートアップだ。

Fast. ai は Jeremy Howard 氏が主導する 7 週間のディープラーニングの 初級コースを提供している。同氏は Doc. ai のチーフサイエンスオフィサーでもある。このオンライン教育の取り組みは AI を民主化するため、そして基本的なコーディングの知識がある者であれば誰でも AI モデルをデプロイできるようトレーニングするためにデザインされており、世界中から数十万人が受講している。PyTorchで Fast. ai のディープラーニングライブラリをどう使うのかといったような他のコースも利用可能である。

Crestle は Fast. ai のコース受講者向けに特化して、元受講者である Anurag Goel 氏によって作られた。Fast. ai のコースから生まれたその 他のスピンオフには、目が不自由な人が対象物を見分けるよう手助け するアプリ Envision や、コンピュータビジョン駆動の Not Hotdog ア プリなどがある。Not Hotdog は HBO で放送された TV ドラマ『シリコンバレー』に登場したアプリで、エミー賞にノミネートされた。

スケール可能なようにプラットフォームをリライトしたことで、 Fast. ai のコースの参加者にとって Crestle は最良の選択肢になると Howard 氏は考えている。

Google Cloud Platform は Fast. ai のライブラリ、データセット、そしてレッスンを組み込んでおり、コース参加者に向けて Linux サーバのソリューションを用意することもできる。Fast. ai のコースのマテリアルをサポートする AWS SageMaker は、今後数週間のうちに利用できるようになる予定だと Howard 氏は述べた。

この秋の Fast. ai Live のコースと 2019 年 1 月の Fast. ai MOOC の参加者は、AI モデルのトレーニングのためにクラウドで Crestle GPU を無料で使えるようになる。

	Crestle は現在 Google Cloud が提供している。以前のバージョンは AWS から提供されていたと、同社の広報担当者は VentureBeat に語っ
	た。
	□ 無料でディープラーニングを学習できる Fast. ai からスピンアウト
特徴等	した。
	□ AIの仕組みを利用して医療サービスを提供しようとしている。
備考	

(15) AI を用いたトポロジー最適化手法による EV 用モーターの設計支援プログラムを

開発

名称	AI を用いたトポロジー最適化手法による EV 用モーターの設計支援プロ
	グラムを開発
分類	設計
BB 3% TH TT +A	株式会社明電舎
開発・提供者	北海道大学
参照 URL 等	http://www.meidensha.co.jp/news/news_03/news_03_01/1229207_2469
多照 UKL 等	.html
	明電舎はトポロジー最適化手法(以下 Ngnet 法)に AI を用いた EV 用モ
	ーター設計支援プログラムを北海道大学と共に開発した。これによ
	り、省エネ・高効率が求められる高性能な EV 用モーターにおける最適
	なローター形状を自動で探索し、設計することが可能となった。
	◆ローター設計手順 ◆試作機にて有効性を確認
	実際にモーターを製作し件能を
	① Sample ② Sample ③ Sample ② Sample ③ Sample ④ Sample ④ Sample ④ Sample ⑥
	初期形状 最適化結果 手直U形状
	①最適化 ②可視化 新規手法により、形状が細かく分かれてしまう 最適化結果から手直し時の方針決定のため、
	現象を防止し、実用レベルの形状探索が可能 モーター特性への影響度合いを可視化
内容等	
	従来方法 NGnet 法 ベクトル表示 外形線表示
	論文)「トポロジー最適化による増込磁石同期モーターの回転子形状最適化」など 特許)「形状最適化結果表示方法及びその装置」など(北大と明電舎の共同出願)
	本手法では、EV 用などで多く使われる PM モーターというローター内部
	に永久磁石を埋め込んでいるモーターの設計が対象とする。これまで
	は設計者の経験やシミュレーション及び実験データを基にローター内
	の磁石や空隙の形状を決めてきたのに対し、AIを用いることで最適な
	形状を自動で求められるようになった。
	モーターの主要な特性であるトルクやトルクリップルだけではなく、
	モーター設計時に必要なエネルギー損失や強度も考慮し、自動でロー
	ターの最適形状を得ることが可能になった。

	複雑な最適形状から製作可能な形状にするためには手直しが必要になるが、修正する際に形状の変更がどの程度モーター特性に影響するのかが分からなかった。そのため、モーター特性に強く影響するため変更してはいけない部分と、あまり影響しないため変更してよい部分が設計者に分かるように可視化するシステムを開発し、形状の修正を容易にすることもおこなった。 今回開発した設計プログラムは AI を用いているため、従来は人では想像し得なかった形状を得ることが可能となり、さらに性能のよいモーターを設計出来る可能性がある。また、設計したいモーター特性の目標値や条件を設定するだけで最適な形状を得ることが可能となるため、乗り心地の向上や騒音の低減、省エネ化向上など、お客様の要望に合った EV 用モーターを提供することが可能となる。
特徴等	 □ AI により最適な形状を自動で探索し、設計することが可能となった。 □ 可視化システムも開発し最適化形状から製作可能な形状への手直しを容易にした。 □ AI を用いているため人では想像し得なかった形状、性能のモータを設計できる可能性がある。
備考	

(16) AWS のディープラーニングを使い、自然災害による損害賠償を軽減する

	AUIC ので、 プニーンガナけ、 古仏の中にフロウは降されたに
名称	AWS のディープラーニングを使い、自然災害による損害賠償を軽減する
 分類	業務支援
開発・提供者	
	Amazon
	EagleView
参照 URL 等	https://aws.amazon.com/jp/blogs/news/using-deep-learning-on-
	aws-to-lower-property-damage-losses-from-natural-disasters/
	大規模な自然災害により毎年何百億 USD もの損害賠償をもたらし、住
	宅所有者の生活において経済的混乱を招いている。保険会社は影響を
	受けた家屋を評価するために最善を尽くしているが、評価を開始する
	までに数週間かかることもあり、それでようやく家屋を修復し保護す
	ることができる。
	プロパティデータ分析会社である EagleView 社は、衛星、航空写真、
	 無人機の画像と AWS におけるディープラーニングを用い迅速に評価を
	おこなう。
	 通常、保険会社は所有物損害の評価のために損害査定人を派遣する
内容等	が、大規模な自然災害ではその地域が浸水したり、アクセスできない
	ために、対応するのに数週間かかる場合がある。EagleView社では、衛
	星、航空写真、無人機の画像を使い、AWS Cloud でディープラーニング
	を実行し、24時間以内に損害賠償を正確に評価する。住宅所有者に情
	報を提供すると同時に、データを大手保険保険会社や小規模な地域の
	保険会社の両方に提供している。
	多くの場合、この迅速な処理により、損害賠償において数百万 USD を
	節約することができる。フロリダ州のハリケーンアーマーからの洪水
	の際、クライアントはこのタイムリーなデータを使用して、防水シー
	トで家屋の一部を覆い、二次的な水害を防ぐことができた。

損害査定人による不動産評価の精度と一致させるために、災害の影響を受けた地域の多次元空間(空間、時間、スペクトル)全てをカバーする豊富な画像セットを使用する必要がある。この課題を解決するため、EagleView 社は米国全土で、120 台以上の航空機を使用して1インチ以下の解像度で撮影している。撮影した画像は、ディープラーニング画像分類器、オブジェクト検出器、およびセマンティックセグメンテーションアーキテクチャを実行するために、小さな画像タイル(しばしば区画固有のタイルまたは一般的な 256×256 TMS タイル)に分解し、各画像タイルを対応する地理空間および時間座標と関連付け、追加のメタデータとして保持、学習プロセスおよび推論プロセスを通じて維持する。推論後、地理空間データを使用してタイルが貼り合わされて、ニューラルネットワーク予測を含む、関心領域の情報を地理登録したマップを形成する。予測は、AWS Cloud で管理されている永続ストレージ用のプロパティレベルのデータベースに集約することもできる。

以下の図は、2017 年のハリケーンハーベイ後のテキサス州ロックポートの一部で、EagleView 社のディープラーニングモデルによる損傷予測の精度を示している。左の画像の緑色の箇所は、人間の分析結果による壊滅的な構造的損傷が発生する土地を示す。右側の画像のピンクの箇所は、モデルが作成したセグメント化した損傷予測である。このデータの場合、モデルは人間の分析と比較してアドレス当たり96%の精度を持つ。

また、効率と精度を向上させるため暫定的な前処理能にディープラーニングを使い、アドレスレベルの属性を生成する前に画像が良好であるかどうか(たとえば、曇っていないか、ぼやけていないかなど)、また画像に関心のある適切な土地が含まれているかどうかを見極め、中間神経網を鎖状につないで、画像の前処理をおこなっている。

このシステムは、Apache MXNe フレームワークを使用してディープラーニングモデルを構築している。モデルは、AWS 上の Amazon EC2 P2、P3、および G3 GPU インスタンスを使用してトレーニングしている。準備が整ったら、モデルを大量の Amazon ECS コンテナにデプロイして、EagleView 社が毎日収集するテラバイト級の航空写真データを処理する。同社は、Amazon S3 に格納されている不動産中心の空中映像のペタバイト級のデータを蓄積している。その結果は、データの種類に基づいて Amazon Redshift、Amazon Aurora、および Amazon S3 の組み合わせで格納されている。例えば、セグメント化されたラスタマップなどのディープラーニング画像製品は S3 に格納され、Amazon Redshift データベースにおいて所在地住所の関数として参照される。結果の情報は、API またはカスタムユーザーインターフェイスを使用してEagleView 社のクライアントに提供される。

Strong氏は、EagleView 社が他のディープラーニングフレームワークよりも MXNet を選択した理由として、「MXNet を採用したのは、柔軟性、スケーラビリティ、革新のペースの点です。MXNet を使用することで、強力な P3 GPU インスタンスでモデルをトレーニングすることができ、モデルを素早く反復して構築することができます。それらを

F	
	低コスト CPU インスタンスにデプロイして推論することができます。
	MXNet はペタバイト級のイメージストレージと関連データを含む、操
	作に必要な種類のスケールを処理することもできる。最後に、MXNet
	の技術革新のペースにより、ディープラーニング空間の進歩に容易に
	追いつけます。」を挙げている。
	EagleView 社の次のステップの1つは、Gluon を用いることである。
	これは、TensorFlow、PyTorch、または他のフレームワークでネイティ
	ブに開発された R&D モデルを MXNet に変換するための、オープンソ
	ースのディープラーニングインターフェイスで、データ・サイエンテ
	ィストや他のオープンソースの開発者が作った機械学習モデルを大規
	模な推論を実行するための MXNet に取り入れることができる。
	□ MXNet と AWS の色々なサービスを組み合わせて実現している。
	□ 衛星、航空写真、無人機からの画像と AWS のディープラーニングを
	組み合わせ、損害の評価を迅速におこなう。
特徴等	□ 住宅所有者と保険会社に早期に情報を伝えることにより被害の拡
	大を防ぐ。
	□ 効率と精度を向上させるため暫定的な前処理能にもディープラー
	ニングを使用している。
備考	

(17) 対話型 AI 開発スタートアップ Spot、職場のセクハラに対応するためのボットを

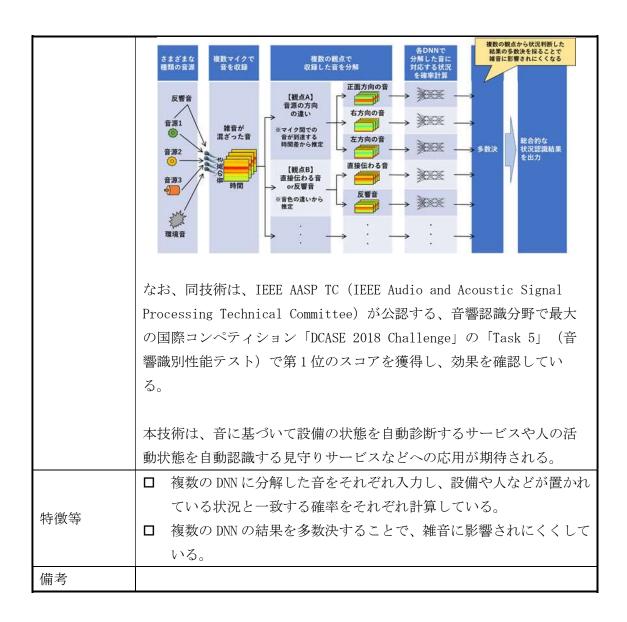
ローンチ

	対話型 AI 開発スタートアップ Spot、職場のセクハラに対応するための
名称	ボットをローンチ
分類	チャットボット
開発・提供者	Spot
参照 URL 等	http://thebridge.jp/2018/10/spot-launches-workplace-harassment-bot-for-internal-company-use
参照 URL 等	対話型 AI スタートアップの Spot は、職場でのセクハラ被害を匿名で報告できるボットを発表した。Spot のボットは、対話型 AI と認知面接の手法を用いて、職場ハラスメントの情報を収集する。 ハラスメント被害を受けた個人がボットに話しかけると、雇用主に提出可能な報告書が作成される。このボットを採用する企業は、オンラインダッシュボード上ですべてのセクハラに関する報告書を閲覧することができる。 従業員は、社員 ID 番号やメールアドレスで Spot にログインすることができる。Spot への情報入力は匿名化されるが、企業の人事部のスタッフは Spot 上のチャットツールを使ってフォローアップすることがで
	きる。 Spot は企業に対し、このプロダクトを導入し、報告書が届いてから 10 営業日以内のフォローアップを約束することを求める。もしその日数が経過しても、報告書について従業員が連絡を得られなかったときは、従業員は報告書 ID と共に Spot にメールをし、Spot は当該企業に連絡する。

(18) 弁護士が作る AI 契約書レビューサービス「LegalForce」のオープン β 版が公

開

名称	弁護士が作る AI 契約書レビューサービス「LegalForce」のオープン β
	版が公開
分類	業務支援
開発・提供者	LegalForce
参照 URL 等	https://legalforce-cloud.com/
≫₩ our 寺	https://jp.techcrunch.com/2018/08/20/legalforce-beta/
	法律事務所や企業の法務部門が日々担っている業務に契約書のレビュ
	ー業務がある。LegalForce では、AI 活用の契約書レビュー支援サービ
	ス「LegalForce」を開発しオープン β 版の提供を始めた。
	現在の Legal Force でできるのは「契約書の自動レビュー支援」と「契
	約書データベースの作成」の大きく2つである。これらによって契約
	書のリスクや抜け漏れを自動でピックアップすることに加え、社内に
	眠るナレッジを有効活用できるような環境を提供する。
 内容等	自動レビュー支援機能は LegalForce 上に契約書のワードファイルをア
1171.4	ップロードした後、契約類型と自社の立場を選択すれば、リスクを抽
	出したり条項の抜け漏れを検出したりする機能である。
	例えば、秘密保持契約書において「その他のアドバイザーに対して秘
	密情報を開示できる」という旨の記載があった場合、秘密情報を渡す
	側からすると比較的広い範囲の相手に開示されてしまう可能性がある
	ため、そのリスクを自動でコメントしてくれる。
	また LegalForce では記載のある内容についてレビューするだけでな
	く、"本来は入れておいた方が望ましいけれど、現時点では契約書内
	に含まれていない内容"も抽出する。

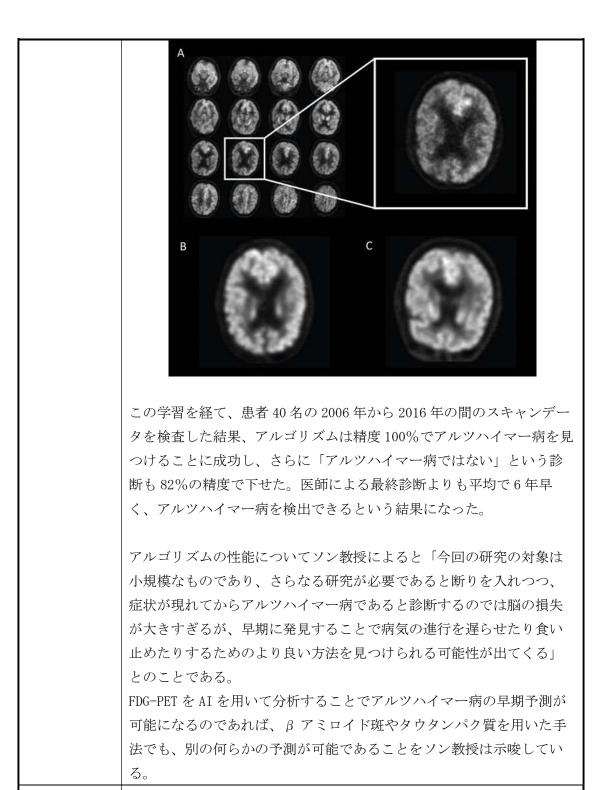

現在対応しているのは秘密保持契約書のみだが、今後はニーズの多いものから順に類型を広げていく方針。またレビュー結果も現状は csv でダウンロードする仕組みになっているが、ブラウザ上でそのまま表示できるようにアップデートする予定だという。

そしてLegalForceにはもうひとつ、契約書のデータベース機能が搭載されている。これは社内に眠っている契約書ファイルをアップロードすることで、各社独自のデータベースを作成できるというものだ。 LegalForceにアップした契約書は自動で条単位に分割されるため、キーワード単位で過去の条項を参照することが可能である。たとえば「損害賠償」と検索すると、これまで作成した契約書の中から損害賠償に関する条項のみを探し出せる。

探す時間を限りなく $\mathbf{0}$ に、迷う時間を限りなく $\mathbf{0}$ に。 「この条文が気に入らない」「こういう条項を差し込みたい」という時に。 「不可抗力免責」「損害賠償」などキーワードを入力するだけで過去のデータベースから関連条文を一瞬で検索。 契約書データベース + アップロード ○ 条文検索 : 採市形像 2 ~ 乙は、本契約条項の違反により開示者に損害を与えたときは、甲が被った一切の損害を賠償する資を負うものとする。 図 NDAD G形1 (現方類形) .dock 全 数引基本契約集 (其主程序) Reviewed.docs ○ 取引基本契約書 (利主和利) Reviewed.docx S BULLANDS CREEKS BAN 1-15/15 現在約1.5万件の契約書を分析しており、今後はこれらのナレッジを 蓄積しつつ、レビューやデータベースの検索精度を上げていくフェー ズとなる。今回のオープンβ版を経て、2019年1月には正式版をリリ ースする計画だという。 AI を活用した契約書レビューサービスと言えば AI-CON などがあるが、 AI-CON がスタートアップやフリーランサーも含めたエンドユーザーの 利用も想定しているのに対し、LegalForce のターゲットは契約書をチ エックする立場の法律事務所や企業の法務部門といった違いがある。 定型的な契約書レビュー業務を効率化することで、弁護士や法務部の 担当者の負担を減らし、より高度な仕事にチャレンジできるようにサ ポートできることがメリットである。 □ 秘密保持契約書の条文を解析し、リスク分析、リスクについてのコ メント、追加しておいた方が良い条項を提示する。 特徴等 □ 契約書をチェックする立場の法律事務所や企業の法務部門をター ゲットとする。 備考

(19) 工場での設備診断の自動化に向け、音で稼働状態を認識する AI 技術を開発

名称	工場での設備診断の自動化に向け、音で稼働状態を認識する AI 技術を
	開発
分類	診断
開発・提供者	株式会社日立製作所
参照 URL 等	http://www.hitachi.co.jp/New/cnews/month/2018/11/1105a.html
	日立製作所は、周囲の雑音に影響されずに音に基づいて状況を認識で
	きる AI 技術を開発した。音で工場設備の稼働状態を認識する自動診断
	するサービスなどに活用を見込む。
	従来、センサーを使わない音を利用した設備点検においては熟練者が
	音を聴いて経験に基づき設備の稼働状態を診断する方法が一般的であ
	ったが、本技術ではさまざまな観点で音を分解することで、高精度に
	状況を認識することができる AI 技術を開発した。
	具体的には、複数のマイクロホンで音を録音し、マイクロホン間での
内容等	音が到達する時間差から推定される音源の方向や、音色の違いから推
	測される反響音かどうかなどの複数の観点に基づいて、雑音が混ざっ
	た音を分解する。さらに、複数のディープニューラルネットワーク
	(DNN)に分解した音をそれぞれ入力し、設備や人などが置かれている状
	況と一致する可能性(確率)をそれぞれ計算する。最後にその計算結果
	の多数決により、総合的な状況認識結果を出力する。それぞれの DNN
	が受け持っている一つの観点だけに頼ると雑音に影響されやすいとい
	う問題があるが、複数の DNN の多数決による結果を確認することで雑
	音に影響されにくくなる。これにより、多様な種類の雑音が存在する
	環境でも高精度な状況認識が可能となる。



(20) ファッションテック「Liaro」

	ける AI 導入の促進を目指し、アルゴリズムの実装だけでなく、データ
	のシームレス化に向けたデータ基盤の開発までトータルに提供してい
	< ∘
	他社からもファッション系の解析エンジンは提供されているが、アル
	ゴリズムについては公開されているものであり差別化要因にはなりに
	くい状況である。ファッション業界ではデータを扱うという基盤が整
	っていないことに課題が会うため、Liaro ではデータ基盤の整備からア
	ルゴリズムの提供、最終的な需要予測まで提供することで差別化を図
	る。
	□ アパレル業界は商品の約 50%が売れ残る前提のビジネスモデルにな
特徴等	っていることを解決することを目的とする。
	□ AIの提供のみでなく、データ基盤からアルゴリズムの提供、最終的
	な需要予測まで提供する。
備考	

(21) ディープラーニングを用いたアルツハイマー病の脳の FDG-PET 画像診断

	ディープラーニングを用いたアルツハイマー病の脳の FDG-PET 画像診
名称	断
 分類	医療
<u>パ</u> 開発・提供者	カリフォルニア大学サンフランシスコ校放射線医学画像診断学科
参照 URL 等	https://gigazine.net/news/20181107-alzheimer-diagnosis/
	https://pubs.rsna.org/doi/10.1148/radiol.2018180958
	世界で数千万人を悩ませているアルツハイマー病は、早期に見つける
	ことがとても難しい病気である。カリフォルニア大学サンフランシス
	コ校(UCSF)放射線医学画像診断学科のジェ・ホン・ソン教授らは、脳
	のスキャン画像とディープラーニングを組み合わせた40件の事例で、
	アルツハイマー病の早期診断に成功した。
	 アルツハイマー病の診断に AI を用いる試みはほかでも行われている
	が、UCSF の研究チームではこれまで学習に用いられてこなかったバイ
	オマーカーに着目した。アルツハイマー病研究を進めているアルツハ
	イマー病神経イメージングイニシアチブ(ADNI)のデータセットに含ま
	れる 1002 名の患者から得られた 2109 例の FDG-PET 画像を使用した。
مادة والرارا	FDG-PET は、FDG(放射性グルコース化合物)を血流内に投与して体組織
内容等	に取り込ませ、FDG がどれぐらい取り込まれているかに応じて組織の代
	謝活動を測定できるというイメージング技術である。
	データセットの90%でディープラーニングのトレーニングを、残り
	10%でテストを行い、アルツハイマー病に対応する代謝パターンを学
	習させた。
	FDG-PET 画像の一例として、A はアルツハイマー病の 76 歳の男性の画
	像、B は軽度認識障害の 83 歳の女性の画像、C はどちらでもない 80 歳
	の男性の画像で、AはCに比べてやや灰色に見える。一方で、BとCを
	肉眼で見分けることは困難である。

特徴等

- □ FDG-PET 画像とディープラーニングを組み合わせることで医師による最終診断よりも平均で6年早い診断ができた。
- □ アルツハイマー病であるというだけではなく、アルツハイマー病ではないという診断も82%の精度で下せた。

備考

(22) 少量の血液でがん発見するシステム開発へ ディープラーニング活用、DeNA が

PFN と共同研究

	少量の血液でがん発見するシステム開発へ ディープラーニング活
名称	用、DeNAが PFN と共同研究
 分類	医療
	PFDeNA
参照 URL 等	
参照 UKL 等	http://www.itmedia.co.jp/news/articles/1810/29/news091.html 国立がん研究センターとともに、がんの診断精度を高めるシステム開
	発に取り組んでいる PFDeNA (DeNA と PFN (Preferred Networks) によって
	共同設立)が、少量の血液からがんの有無を判定するシステムの開発を
	目指して研究を始めると発表した。ディープラーニング(深層学習)に
	よって胃がんや肺がん、乳がんなど14種のがんを判定する仕組みを作
	り、2021年の事業化を目指す。
	** **********************************
	検体のピックアップ、臨床情報の匿名化管理
	検体 効味情報データベース
内容等	
	☑ - PFDeNA 検体を解析し、ExRNAを情報化する
	S - EXPERT
	検体 解析 ExpNA情報化 臨床情報データベース
	Preferred
	深層学習による学習・評価・解析
	Scott X
	EXRNA情報 難床情報データベース
	•
	PFDeNAが、PMDA承認審査を経て社会実装を目指す

近年の研究で、がんになると体液に含まれるマイクロ RNA という物質
の種類や量が変動することや、罹患した臓器によってマイクロ RNA の
発現に違いがあることなどが分かっている。開発するシステムでは、
採取が容易な血液からマイクロ RNA を計測し、計測結果と臨床情報を
使ってディープラーニングにより、14種類のがんの有無を高精度で判
定できるようにする。
少量の血液採取でがんを発見できるようにし、患者の負担が少ないが
ん検診の普及や早期発見につなげることを目標とする。研究に使う血
液や臨床情報は、国立がん研究センターが提供者の合意のもと研究用
に収集したものを、個人が特定されない形で使用する。医薬品医療機
器総合機構の承認を得た上で、2021 年を目標に事業化する計画だ。
□ マイクロ RNA の種類や量の変動についての臨床情報と計測結果を使
ったディープラーニングにより 14 種類のがんの有無を高精度で判
定する。
□ 医薬品医療機器総合機構の承認を得た上で、2021年を目標に事業化
する計画である。

(23) ユニクロ、AI を活用した買い物アシスタントサービス「UNIQLO IQ」を公開

). (+) MILL M				
名 称	ユニクロ、AI を活用した買い物アシスタントサービス「UNIQLO IQ」を				
	公開				
分類	チャットボット				
開発・提供者	ユニクロ				
参照 URL 等	https://markezine.jp/article/detail/28849				
	ユニクロは、ユニクロアプリ上で起動するお買い物アシスタントサー				
	ビス「UNIQLO IQ」を公開している。				
	J UNI				
	20 dec				
	8:5 © 5				
	あなた専用の ************************************				
	お買い物アシスタントが、				
	EUP-CASE)				
	UNIOLOアプリ内でご利用いただけます Sany 1-1275 1 Coople Play				
I all tits	■ ③ *-2-+(-),23				
内容等 					
	2017年9月に試験運用を開始した「UNIQLO IQ」は、AI を活用したチ				
	ャット自動応答システム(チャットボット)である。商品情報や着こ				
	なしの検索、店舗の在庫状況の確認、オンラインストアでの購入、よ				
	くあるお問い合わせの確認やカスタマーセンターへの相談といった、				
	買い物の一連の流れをサポートする。ユーザーは、自分専用のお買い				
	物アシスタントとして、店舗・オンラインストアを問わず、新しいチ				
	ャットショッピングを体験できる。				
	また、同社は試験運用期間中、ユーザーの声を基に改良を重ねてき				
	た。今回の本格展開にあたり、機能の追加、サービスの拡充を行って				
	いる。				
特徴等	□ チャットボットを商品情報や着こなしの検索、在庫状況の確認など				
	のインタフェースとして採用した。				
備考					
	I .				

(24) チームラボ、ファッションアプリ「メチャカリ」に "パーソナライズスタイリン グ AI チャットボット"を導入

7 KI 7 Y 7	アトボット"を導入		
名称	チームラボ、ファッションアプリ「メチャカリ」に"パーソナライズ		
\[\sigma \text{\tin}\text{\tett{\text{\tetx{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\ti}\}\tittt{\text{\text{\texi}\text{\text{\texi}\tittt{\text{\text{\text{\texi}\text{\texitt{\text{\texi}\tint{\tiint{\texit{\tet{\text{\texi}\text{\text{\texi}\tint{\texit{\texi}\tittit}\titti	スタイリング AI チャットボット"を導入		
分類	チャットボット		
開発・提供者	チームラボ		
	ストライプインターナショナル		
参照 URL 等	https://www.team-lab.com/mechakari-personalstylist		
内容等	チームラボでは、ファッションサブスクリプションサービス「メチャカリ(MECHAKARI)」アプリの新機能として、AI を活用した「パーソナライズスタイリング AI チャットボット」機能を導入している。		
	メチャカリは、ストライプインターナショナルが展開するファッションサブスクリプションサービスであり、チームラボがシステムおよび専用アプリの企画・制作を担当している。2015年9月のスタート以来、累計ダウンロード数は75万を突破している。ユーザーは「earth music&ecology」をはじめとする人気ブランドの新品ファッションアイテムを、定額で何度でも借りることができる。 メチャカリのアプリ内には、新品・新作の洋服などが常時10,000種類以上提供されている。パーソナライズスタイリング AI チャットボットの導入により、10,000種類以上のアイテムの中から、お客様に合わせたコーディネートやアイテムのご提案が可能になった。AI の活用によ		

	る質の高いパーソナライズスタイリングで、お客様のコーディネート
	に対するお悩みを解決し、サービスの更なる発展を目指す。
	「メチャカリ」のパーソナライズスタイリング AI チャットボットは、
	アプリをダウンロードした全てのユーザーに対して、ユーザーの好み
	に合った服をレコメンドする。
	「よく見ているカテゴリからおすすめ」「おまかせコーディネート」
	「レンタル中のアイテムと組み合わせ」「トレンドアイテム」からな
	る4つのメニューと、アプリ内の行動履歴を元に、パーソナライズさ
	れたコーディネートやアイテムをチャットボットが提案。ユーザーの
	商品探しをより便利にお手伝いする。これにより「自分に合ったアイ
	テムやコーデを見つけやすく」の実現を目指す。
11-to (1111 - 5-5-	□ 自分に合ったアイテムやコーデを見つけやすくする。
特徴等	□ チャットボットからコーディネートやアイテムの提案をおこなう。
備考	

(25) AI で顧客の声を約1,300種類に分類する「感性分析サービス」の提供を開始

(25) AI C/顧	各の戸で約1,300 性類に分類90「感性分析リーログ」の症供を開始				
名 称	日立、AI で顧客の声を約1,300種類に分類する「感性分析サービス」				
	の提供を開始				
分類	感性分析				
開発・提供者	日立製作所				
参照 URL 等	https://markezine.jp/article/detail/29363				
内容等	日立製作所は、SNS やテレビ、新聞といったメディア情報およびプログやロコミ情報などの会話記録などから、顧客の声を約1,300 種類の「話題」「感情」「意図」に分類・見える化する「感性分析サービス」の提供を開始している。 (***********************************				

	日月 バラマル ニトラトル・シュ・ファーマは切れ じょう 人衆の文
	同サービスでは、テキスト化されたメディア情報などから、企業や商
	品に対して抱かれている感情を高精度に分析。データの収集・分析・
	可視化から、絞り込み条件の自動メンテナンスといった運用保守まで
	をトータルで提供している。
	また、各種業務システムと連携し、分析した顧客の声を売り上げ実績
	や見積もりといった業務データとかけ合わせることが可能だ。そのた
	め、ブランド戦略に限らず、販売・生産計画や商品開発、リスク対策
	など様々な企業活動への活用が見込める。
	なお、同サービスは提供開始に先行し、2018年4月より本田技研工業
	の広報・マーケティング活動に採用されている。新車発表やイベント
	出展の反響分析として、イメージや感情を車種別・トピック別に可視
	化。分析やレポート作成に要する業務負荷を軽減するなど、一定の効
	果が得られている。
	□ 収集したい単語に対して関連性や出現頻度が高いキーワードを機
特徴等	械学習させている。
	□ 本田技研工業の広報・マーケティング活動で採用されている。
備考	

(26) セプテーニ、機械学習を活用した運用レコメンドツールを開発 コンサルタント の作業効率向上へ

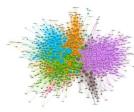
	セプテーニ、機械学習を活用した運用レコメンドツールを開発 コン			
名 称	サルタントの作業効率向上へ			
	レコメンド			
開発・提供者	セプテーニ			
参照 URL 等	https://markezine.jp/article/detail/27949			
	セプテーニは、機械学習を活用した運用型広告のアルゴリズム解析お			
	よび運用レコメンドツール「Precog for Action(プリコグ フォー ア			
	クション)」を開発した。			
	深層学習や機械学習などの活用を推進する専門部署「AI 推進室」に			
	て、インターネット広告事業のさらなる発展を目的とした研究と開発			
	を続けている。			
I	今回開発したツールは、これまで蓄積してきた広告の運用行動ログデ			
内容等	 一タをもとに、「各運用行動」が「広告効果」にどの程度影響を与え			
	 ているかを機械学習により解析。その上で、広告効果を高める最適な			
	アクションプランを予測、提案することができる。			
	 同ツールの活用を通じて、広告効果の向上を図るとともに、業務の自			
	動化・標準化をすすめ、運用コンサルタントがより広告主企業と向き			
	 合い、課題解決に向けた新しいアイデアを創出できる体制を構築して			
	いく。			
特徴等	□ 広告の運用行動ログデータをもとに、「各運用行動」が「広告効果」			
	にどの程度影響を与えているかを機械学習により解析している。			
	□ 広告効果を高める最適なアクションプランを予測、提案する。			
備考				

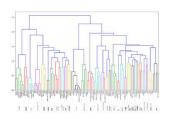
(27) 電通グループ3社、バナーを自動生成するAIツールを開発

名称	電通グループ3社、バナーを自動生成するAIツールを開発
	広告
	電通
開発・提供者	電通デジタル
	データアーティスト
参照 URL 等	http://www.dentsu.co.jp/news/release/2018/0516-009538.html
	電通グループ3社(株式会社電通、株式会社電通デジタル、データアー
	ティスト株式会社)は、共同で AI を活用したバナーの自動生成ツール
	「ADVANCED CREATIVE MAKER」(β版)を開発した。
	本ツールは、過去に配信されたインターネット広告バナーの表現とク
	リック率実績を、ディープラーニングを用いて分析することで、パフ
	オーマンスの高いバナーの効率的な生成に寄与する。本ツールではお
	よそ5秒間に1枚のバナーを生成することが可能で、短時間に候補と
	なり得るバナーを 1,000 枚以上生成し、その中から特に優れた 10~20
	案を利用することを想定している。
	電通ではグループ横断プロジェクトチーム「AI MIRAI」を発足させ、
	広告マーケティング領域における AI 研究の更なる高度化を推進してい
	る。ツール開発の背景には、生活者一人ひとりに最適化されたコミュ
内容等	ニケーションを志向する現代マーケティングの潮流がある。そのた
	め、ネット広告においてもバナーの大量生成が求められるが、従来は
	すべて手作業で対応せざるを得ず、長い作業時間を要していた。この
	課題を解決するために「AI MIRAI」の活動の一環として、電通デジタ
	ル「アドバンストクリエーティブセンター」が中心となってツール全
	体の設計・制作を行い、データアーティスト社が予測モデルを開発す
	ることで、本ツールを開発した。
	 電通グループでは、実作業をクリエーターと AI が担う新たな協業の形
	を「ADVANCED CREATIVE」と名づけ、クリエーターの働き方そのものを
	変えていくことを視野に入れた取り組みを行っている。今後はこの仕
	組みを、動画広告など他のクリエーティブ領域にも広げていく予定で
	ある。
	() () () () () () () () () ()
	Z TADWANCED CDEATIVE MAVED (0 HE) : ALLYEZ: N
	<「ADVANCED CREATIVE MAKER(β版)」の仕組み>

-			
	入力された「キーワード」「訴求軸」といったオリエンテーション		
	対して、1つ目の予測エンジンが、パフォーマンスが高いと考えられる		
	クリエーティブ要素を割り出す。		
	次に、その候補に基づき、自動生成ツールがバナーのデザインを組み		
	上る。コピーは、電通オリジナルの AI コピーライター「AICO」が生成		
	するものを使用する。		
	出来上がったクリエーティブを、2つ目の予測エンジンが、より精緻に		
	クリック率をシミュレーションし、効果が高いと予測されるものを残		
	す。最後に、人の手で仕上げを行い、完成となる。		
	□ 2つの予測エンジンと、最後に人手での仕上げを行い完成となる。		
	□ 1つ目の予測エンジンは、入力された「キーワード」「訴求軸」とい		
	ったオリエンテーションを元にフォーマンスが高いと考えられる		
ul-le Zulul, keke	クリエーティブ要素を割り出す。		
特徴等	□ 2 つ目の予測エンジンは、より精緻にクリック率をシミュレーショ		
	ンし、効果が高いと予測されるものを残す。		
	□ コピーは電通オリジナルの AI コピーライター 「AICO」 が生成するも		
	のを使用している。		
備考			

(28) マーケティングオートメーション「MAJIN」、機械学習でスコアリング行う機能 追加


	- 1				
名称	マーケティングオートメーション「MAJIN」、機械学習でスコアリング 行う機能追加				
 分類					
開発・提供者	広告				
	ジーニー				
参照 URL 等	https://markezine.jp/article/detail/27425				
	ジーニーは、マーケティングオートメーションツール「MAJIN」に AI				
	技術を活用した新機能「AI スコアリング」を搭載し、提供を開始して				
	いる。				
	これまで過去にコンバージョン(以下、CV)した多数の顧客の行動履歴				
	データを統合・解析し各マーケティング施策の CV への貢献度を算出・				
	重み付けを行うスコア設計は、マーケターにとって煩雑で手間のかか				
	る業務だった。ジーニーはこの課題を解決すべく、今回の機能の開発				
	している。				
内容等	# A I スコアリング				
	「AI スコアリング」では、過去に CV した多数の顧客の行動履歴データを集計・分析・評価し、機械学習によって CV しやすい傾向を予測する。その結果をもとに、スコアリングロジックを生成し、各見込み顧客にスコアを付与・集計することで、購買検討度合を可視化できる。これにより、導入企業は、手動による煩雑なスコアリング業務をすることなく、最新の CV 情報に基づいたスコアリングロジックで、見込み顧客の購買や契約に対する関心度を可視化することができる。				
特徴等	□ 過去に CV した多数の顧客の行動履歴データを集計・分析・評価し、				


(29) コカ・コーラの AI 解析プロジェクト、ブレインパッドが支援 飲料の消費シーンの把握目指す

名称 消費シーンの把握目指す 分類 広告 開発・提供者 ブレインパッド コカコーラ			
ブレインパッド 開発・提供者			
▋開発・提供者 │	広告		
参照 URL 等 http://www.brainpad.co.jp/news/2018/02/13/7079	http://www.brainpad.co.jp/news/2018/02/13/7079		
ブレインパッドは、日本コカ・コーラのプロジェクトの一環と	して、		
SNS の投稿画像を AI で解析し、ドリンクの消費シーンを分析す	つる取り		
組みを実施した。			
食品メーカーにとって、自社商品がどのような生活シーンで消	費され		
ているのかを把握することは、消費者心理を深く理解するため	の重要		
課題の一つである。			
消費者へのインタビューやインターネットへの書き込み内容の			
通じた従来の消費者意識の把握に加え、昨今のディープラーニ			
どを用いた画像解析技術の進化を受け、消費シーンの実態をよ			
理解することを目的として、機械学習などを用いた画像解析に			
あるプレインハットの提供するサービスを活かし、SNSの技情 消費シーンを分析する取り組みを実施するに至った。	あるブレインパッドの提供するサービスを活かし、SNS の投稿画像から		
何負シーンを力削りる取り組みを表施りるに主づた。			
内容等			
SNSからの画像抽出 そのドリンクの消費 一緒に写り込んだ 消費シーンのシーンである画像を識別 背景などを識別 レポート	A STATE OF THE STA		
SNSに投稿された画像の 抽出された画像の中から、 そのドリンクが飲まれて 消費シーンの特徴			
作 中から、特定ブランドのド そのドリンクが飲まれて いると推定された画像の し、その結果をレガ 業 リンクのロゴを含む画像 いると推定される画像を 中から 写真に一緒に写	and the second second		
内 タンクのロコを占む画像 いるご確定される画像を 中から、子葉に 相に子			
に記載されたロゴは排除)	_		
利 用 リ レ のロゴサーチ機能 Vision API Vision API 分析ツール、Exc			
▲消費シーン解析の流れ			
今回の取り組みでは、SNS 上の投稿画像の中から、特定ブラン	今回の取り組みでは SNS 上の投稿画梅の由から 株字ブランドのドリ		
	ンクが写った画像のみを抽出し、一緒に撮影されている物体や背景、		
人物の表情などから、消費者がそのドリンクを飲むシチュエー			
や一緒に食べられている食料品などを解析した。			

実際の解析工程においては、機械学習を用いて消費シーン以外の画像 (例:広告や自動販売機の画像など)の排除を機械学習によって可能にし、さらに一緒に撮影されている物体の識別、約10万枚の画像の分類・集計ができるようになった。また、共起ネットワークや階層クラスタリングにより、そのドリンクがどのような生活シーンで飲まれることが多いのかを可視化し、季節の行事ごとにおける消費傾向の違いなどを解析した。

(左) SNSからの取得画像の例 (右2枚) 共起ネットワークや階層クラスタリングによる画像解析結果の可視化イメージ

特徴等	SNS 上の投稿画像から、特定ブランドのドリンクが写った画像のみ
	を抽出し、一緒に撮影されている物体や背景、人物の表情などから、
	そのドリンクを飲むシチュエーションや一緒に食べられている食
	料品などを解析した。
	機械学習を用いて消費シーン以外の画像排除を機械学習によって
	可能にし、さらに一緒に撮影されている物体の識別、約10万枚の画
	像の分類・集計をおこなった。
	共起ネットワークや階層クラスタリングにより、そのドリンクがど
	のような生活シーンで飲まれることが多いのかを可視化し、消費傾
	向の違いなどを解析した。
備考	

(30) AI がリアルタイムでスパム投稿を監視・削除!データセクションが新ソリューションをリリース

	AI がリアルタイムでスパム投稿を監視・削除!データセクションが新		
名称	ソリューションをリリース		
八岩	スパム監視		
分類			
開発・提供者	データセクション		
参照 URL 等	https://markezine.jp/article/detail/27413		
	データセクションは、ディープラーニング技術を活用したスパム投稿		
	監視ソリューションを開発、提供している。		
	 同サービスでは、ディープラーニング技術を用いた同社独自開発のス		
	 パム判定エンジンにより、曖昧なニュアンスの判定を実現している。		
	掲示板や口コミサイトなどあらゆるメディアに導入する可能で、NG ワ		
内容等	ードリストとのマッチングでは対処しきれないスパム投稿にも対応す		
	ることができる。		
	またメディアごとのポリシーに合わせて判定エンジンを学習させるこ		
	とで、柔軟な判断軸を構築することも可能であり、リアルタイムに自		
	動でスパム投稿を検知し、削除することができる。なお、同サービス		
	しは、テニスポータルサイトである「tennis365.net」の試合ライブペー		
	ジにて実運用を開始している。		
	□ スパム判定エンジンにディープラーニング技術を適用することで、		
特徴等	曖昧なニュアンスの判定を実現した。		
	□ 判定エンジンを組み込む先のポリシーにあわせて学習させること		
	で、柔軟な判断軸を構築することが可能である。		
備考			

(31) 電通、AI を活用した「テレビ視聴率予測システム」を提供開始 テレビ CM 素材 の高度運用が可能に

ショス足のから出に			
名称	電通、AIを活用した「テレビ視聴率予測システム」を提供開始 テレビ CM 素材の高度運用が可能に		
1/ 水立	広告		
分類			
開発・提供者	電通		
参照 URL 等	https://markezine.jp/article/detail/29580		
内容等	電通は、AI を活用したテレビ視聴率予測システム「SHAREST(β版)」をバージョンアップした「SHAREST_RT」を開発、提供している。 入力データ 「RICHEON」 「現立 では、「過去の視聴率データ」「番組ジャンル」「出演者情報」「インターネット上のコンテンツ関覧傾向」などを教師データとするディープラーニングによるモデル構築を行ったもので、放送前1週間のテレビ視聴率を予測できる。 「SHAREST_RT」を活用することで、ターゲットが異なる複数のテレビの素材を、視聴率予測をもとに最適な番組でオンエアする素材割付を行うなど、テレビの素材の高度運用が可能になる。 また新システムでは、予測精度を向上させるためのデータベース基盤「RICH FLOW」も構築されている。ソーシャル関連データや天候関連データ、各種パネルデータ等を「RICH FLOW」上に投入し、データベースを拡充することで、さらなる予測精度の向上や予測対象指標の多様化を進めていく。		
特徴等	□ 「過去の視聴率データ」「番組ジャンル」「出演者情報」「インター ーネット上のコンテンツ閲覧傾向」などを教師データとしてディー		

	プラーニングのモデル構築を行なっている。
	■ ターゲットが異なる複数のテレビ CM 素材を、視聴率予測をもとに
	最適な番組でオンエアする素材割付を行う。
	■ 今後は、ソーシャル関連データや天候関連データ、各種パネルデー
	タ等もデータベース化し予測精度向上や予測対象指標の多様化を
	進める。
備考	

1.6.プラットフォームの事例

1.6.1. プラットフォーム事例・オーバービュー

(1) 大規模データ分析およびマシンラーニング向けプラットフォーム

 名称	大規模データ分析およびマシンラーニング向け、オープンソース GPU
	アクセラレーションプラットフォーム
分類	プラットフォーム
開発・提供者	NVIDIA
参照 URL 等	https://rapids.ai/
	クレジットカード詐欺の予想や、小売り在庫の予測や顧客の購入行動
	を理解するなど、非常に複雑なビジネス課題に取り組むデータサイエ
	ンティストのパフォーマンスを大幅に向上せることができるプラット
	フォームである。データ可視化のためのライブラリも公開される。
	scikit-learn や Pandas の Python インタフェースを擁する。 Apache
	Spark 上で動作するように設計されている。
	 処理性能については、CPU のみで実装した場合と比較して 50 倍(NVIDIA
	│ │の DGX-2 上で ML アルゴリズム XGBoost を使用したシナリオで計測)の
	 高速化を実現した。
│内容等 ┃	
	DAY IN THE LIFE OF A DATA SCIENTIST
	another get a coffee restart ETL workflow get a
	■ 初の GPU 上でデータ分析パイプラインをすべて実行するためのツー
特徴等	ル
可恢立	□ オープンソースコミュニティとの密な連携

	Databricks や Anaconda といったオープンソースコミュニティのパイオ
備考	ニアや、Hewlett Packard Enterpriseや IBM、Oracle などのテクノロ
	ジリーダー企業まで、多くの企業から支持を得れている。

(2) Amazon SageMaker

名称	Amazon SageMaker		
分類	クラウドサービス		
開発・提供者	Amazon		
参照 URL 等	https://aws.amazon.com/jp/sagemaker/features/		
SageMaker は AWS によりフルマネージドされるエンド機械学習サービスである。 通常は Jupyter Notebook で記述したモデルをアプリデプロイするために PMML に変換するといった作業が SageMaker を使用することで Notebook で記述したモデアロイ可能である。		デルをアプリケーション化し、 いった作業が必要であるが、 で記述したモデルをそのままデ	
	SageMaker に組み込まれている		
	アルゴリズム名	教師	用途
	Linear Learner(線形回帰)	あり	分類問題、回帰分析
	XGBoost(勾配ブースティン グ)	あり	分類問題、回帰分析
内容等	Factorization Machines	あり	レコメンデーション
	K-Means (K 近傍法)	なし	分類問題
	PCA(主成分分析)	なし	次元削減
	Image	あり	画像分類
	Classification(ResNet)		
	Sequence2Sequence	あり	機械翻訳、自動要約、音声認識
	Latent Dirichlet	なし	トピック分析
	Allocation(LDA)		
	Neural Topic Model(NTM)	なし	トピック分析
	DeepAR Forecasting	あり	再帰型ニューラルネットワーク
			(RNN) によるより正確な時系列
			予測
	Lシのフェゴルディベルムノー	≕ , →°:	ニーンがのコレーナローカナ
	上記のアルゴリズムではなくディープラーニングのフレームワークを		
	使用したい場合は、SageMaker に組み込まれた次のフレームワークが使		

	用できる。これらのフレームワークは SageMaker が自動的に構成して
	最適化するためユーザーは何もセットアップする必要がない。今後も
	他の主要なフレームワークも追加していく予定となっている。
	TensorFlow
	Apache MXNet
	Chainer
	PyTorch
	上記以外のカスタムアルゴリズムを使ったトレーニングについては、
	ユーザーが作成した Docker イメージとモデルを使ったトレーニングを
	行うことも可能である。
4-t- /dul- /-/-	□ 日本語のドキュメントが提供されている。
特徴等	□ 従量課金であるため、短期的な使用にも向いている。
備考	

(3) Azure Machine Learning

名称	Azure Machine Learning			
分類	クラウドサービス			
開発・提供者	Microsoft			
参照 URL 等	https://azure.microsoft.com	/ja-jp/over	view/machine-learning/	
	Azure Machine Learning は TensorFlow、PyTorch、Jupyter や scikit-learn といったフレームワークを使用している。 Azure Machine Learning には豊富なアルゴリズムが用意されている。 アルゴリズにはエラーの許容範囲や反復回数などのアルゴリズムの動作に影響を与える値、またはアルゴリズムの動作のバリエーションのオプションとなるパラメータを指定できる。通常、パラメータ数が多いアルゴリズムは適切な組み合わせを見つけるのに試行錯誤が必要であるが、Azure Machine Learning ではパラメータ スイープ機能があるのでユーザーが選択した粒度で全ての組み合わせを自動的に試行させ			
	ることができる。			
	アルゴリズム名	パラメータ	メモ	
	Two-class class	sification(2	クラス分類)	
内容等	logistic regression(ロジス ティック回帰)	5		
	デシジョン フォレスト	6		
	decision jungle(デシジョン ジャングル)	6	低メモリ フットプリント	
	ブースト デシジョン ツリー	6	メモリ フットプリントが 大きい	
	neural network(ニューラル ネットワーク)	9	追加カスタマイズ可能	
	averaged perceptron(平均化 パーセプトロン)	4		
	support vector machine(サポート ベクター マシン)	5	大きい特徴セットに好適	
	locally deep support vector machine(ローカル詳	8	大きい特徴セットに好適	

細サポート ベクター マシ		
ン)		
Bayes' point machine(ベイ	3	
ズ ポイント マシン)		
Multi-class class	sification	1(多クラス分類)
ロジスティック回帰	5	
デシジョン フォレスト	6	
decision jungle(デシジョン	6	低メモリ フットプリント
ジャングル)		
ニューラル ネットワーク	9	追加カスタマイズ可能
one-v-all(一対全)	-	
Regre	ession(回身	帚)
linear(線形)	4	
Bayesian linear(ベイジアン	2	
線形)		
decision forest(デシジョン	6	
フォレスト)		
boosted decision tree(ブー	5	メモリ フットプリントが
スト デシジョン ツリー)		大きい
fast forest quantile(高速	9	ポイント予測ではなく分
フォレスト分位)		布
ニューラル ネットワーク	9	追加カスタマイズ可能
Poisson(ポワソン)	5	技術的には対数線形。 カ
		ウント予測用
ordinal(序数)	0	ランク順序予測用
Anomaly de	tection(昇	具常検出)
support vector machine(サ	2	大きい特徴セットに特に
ポート ベクター マシン)		好適
PCA-based anomaly	3	
detection(PCA ベースの異常		
検出)		
K-Means	4	クラスタリング アルゴリ
		ズム

(4) Google Cloud Machine Learning Engine

名称	Google Cloud Machine Learning Engine		
分類	クラウドサービス		
開発·提供者	Google		
参照 URL 等			
内容等	Google Cloud Machine Learning Er Cloud のインフラを使用して利用でこのサービスの特徴の一つに Hyper 機能がある。この機能を使用するこ合わせを自動で調整させることがでAWS や Azure のクラウドベースのサしている TPU という機械学習アクセまた、Cloud Machine Learning Eng Google Cloud では学習済みモデルをている。 Vision API Speech API NL API Translation API VideoIntelligence API	きるサービスである。 Tune というパラメータの自動調整 とで煩雑になるパラメータの組み できる。 ービスとの違いは、Google が開発 フレータも利用できる点である。 gine の直接のサービスではないが、	
特徴等	□ HyperTune というパラメータの自動調整機能がある。 □ TPU も利用できる。		
備考			

1.7.ライブラリの事例

1.7.1. 分散処理フレームワーク

ディープラーニングの学習処理においては、対象とする学習データが膨大であるケースや、データ量が増え続けるケースなどいわゆるビッグデータの取り扱いが必要になるケースがある。そのようなケースでは、学習時間の短縮のために分散処理フレームワークに対応するライブラリを使用することが有効である。

分散処理フレームワークにはいくつかあるが、主だったものを紹介する。

(1) Apache Hadoop

名称	Apache Hadoop	
分類	分散処理フレームワーク	
開発・提供者		
	Apache	
参照 URL 等	https://hadoop.apache.org/	
	Apache Hadoop とは Apache プロジェクトで開発されている分散処理技	
	術である。元々はGoogle が論文として公開したGFS(Google File	
	System)、Google MapReduceをオープンソースとして実装したものであ	
	る。GFS は HDFS(Hadoop Distributed File System)、Google	
	MapReduce は Hadoop MapReduce Framework として再実装されている。	
	Hadoop には3つの特徴がある。	
	1. サーバーを追加するだけでスケールする	
	HDFS の容量や分散処理の性能が不足した場合、サーバーを追加するこ	
内容等	とで容量および処理性能を向上させることが可能である。また、サー	
	バーの追加は、Hadoop を停止することなくおこなえる。	
	2. 非定型データの格納に対応している	
	従来型のデータベースでは定型データの取り扱いを前提にしていた	
	が、HDFS に格納するデータはスキーマ定義が不要であることから、非	
	定型データを扱うことが可能である。また、Hadoop ではデータを処理	
	するタイミングをその都度設定できることから、とりあえず HDFS に格	
	納しておき、必要になった対明でそのデータの扱いを決定するという	
	ことが可能である。	
	3. 普通のサーバーを前提した基盤構成・耐障害性	

Hadoop を構成するサーバーには特殊なものではなく一般的なサーバーを用いる。このため、基盤構築費用を抑えることができる。また、容量、性能を確保するため大量のサーバーを組み合わせることが想定されるが、Hadoop では故障発生を前提としたアーキテクチャであるため、任意のサーバーが故障しても故障に影響されることなくシステムは動作する。

Hadoop MapReduce は、分散処理を実現する処理基盤と処理基盤上で動作する MapReduce アプリケーションの 2 つのコンポーネントから構成される。通常、分散処理といえば通信やファイルの複雑な処理を実装する必要があるが、MapReduce ではそれらの実装を内包している。そのため、以下の MapReduce ジョブを利用することで、それらの複雑な処理を意識せずに分散処理を利用できるようになっている。

ただ、MapReduce ジョブはバッチ処理を前提しているため実行まで最短でも 10 秒程度の時間を要する。そのため、従来のデータベースのようなレスポンスはを要求する処理には向いていない。

1. 処理基盤

MapReduce は、マスターノードである JobTracker とスレーブノードである TaskTracker で構成されている。JobTracker は、ジョブの管理や TaskTracker へのタスクの割り当て、TaskTracker のリソース管理を役割とする。 TaskTracker は、タスクの実行を役割とする。

2. MapReduce アプリケーション

MapReduce アプリケーションは、処理基盤上で動作する MapReduce ジョブから構成される。 MapReduce ジョブでは、主に3つの処理を定義する。

Map 処理	入力データに対して、キーバリューの定
	義を行う。
Reduce 処理	Map 処理でキー毎に集約されたデータに
	対して処理を実行する。
MapReduce 処理	Map 処理、Reduce 処理を処理するための
	設定を定義する。

特徴等

□ 分散処理の複雑な処理を意識することなく分散処理が実行可能で

	ある。
	ジョブの実行まで最短で 10 秒はかかるため、レスポンスが要求さ
	れるような用途には向かない。
	Hadoop を使用した機械学習フレームワークに Mahout がある。
備考	

(2) Apache Spark

名称	Apache Spark	
分類	分散処理フレームワーク	
開発・提供者	Apache	
参照 URL 等	https://spark.apache.org/	
	Apache Spark とは Apache Hadoop の後発として開発されているビッグ データ処理基盤である。	
	後発であるため Hadoop に対し、次の特徴を持つ。	
	・インメモリ処理による高速化が考慮されている	
	・データ格納方法の選択肢が広い	
	・プログラム手法の選択肢が広い	
内容等	1. インメモリ処理による高速化が考慮されている Hadoop の MapReduce 処理では、入出力の際にハードディスクや SSD などのストレージへのアクセスを頻繁におこなう処理が必要であった。これに対して Spark ではデータを一度メモリにキャッシュするという内部処理方法に変更したことで、入出力の高速化を実現した。この効果は特に機械学習で高く、同じデータを反復させて学習させる際に Hadoop の MapReduce と比較するとストレージへのアクセスが低減できるやめ 100 倍にも達するといわれている。	
	2. データ格納方法の選択肢が広い	
	Hadoop が HDFS を格納場所としていたのに対して、Spark では	
	HDFSCassandraOpenStack SwiftAmazon S3	
	など HDFS 以外のストレージも利用することができる。	
	3. プログラム手法の選択肢が広い	

1		
	Hadoop では元々Java で開発されたソフトウェアであったため、Java か	
	ら利用する場合を除いては、Apache Hadoop プロジェクト以外で開発さ	
	れたソフトウェアを介して Hadoop を利用していた。	
	Spark では、Scala で実装されているものの、Java、Python、R などデ	
	ータ処理で広く用いられるプログラム言語用のラッパーが各言語毎に	
	提供されている。また、Spark SQLとして SQLも提供されている。	
	□ 後発として開発されているため Hadoop に対して優れている点があ	
特徴等	る。特に機械学習においては、処理速度の向上が有意である。	
	□ Spark を使用した機械学習フレームワークに Spark ML(ML1ib)があ	
	る。	
備考	Hadoop と Spark は競合という関係だけではなく、Hadoop + Spark とい	
	う構成も可能で、Hadoop だけの状態に Spark という選択肢が増えたと	
	捉えるべきである。	

(3) Apache HBase

名称	Apache HBase	
分類	NoSQL データベース	
開発・提供者	Apache	
参照 URL 等	http://hbase.apache.org/	
	HBase とは Apache プロジェクトが開発する NoSQL データベースであ	
	る。Apache MapReduceのようにGoogleの論文として公開したGoogle	
	BigTable を参考にオープンソースで開発されているソフトウェアであ	
	る。	
	他の NoSQL データベース製品と比べると、次のような特徴がある。	
	・負荷に対して非常に高いスケーラビリティと性能を発揮する。	
	・Cassandra よりもシンプルな一貫性モデルを備えている。	
	・自動でのロードバランス、ファイルオーバー、圧縮機能を備えてい	
内容等	る。	
1.170.41	・サーバー毎に数十個のシャーディングに対応する。	
	HBase は、Hadooop の分散ファイルシステム(HDFS)上に構築される。そ	
	のため、MapReduce の処理にも使用することができる。	
	通常のデータベースでは、読み込み性能が重視されるが、HBase では書	
	き込み性能が重視されている。そのため、書き込むデータはリージョ	
	ンサーバーのメモリ上にバッファリングされ、一定量に達したらディ	
	スクに書き込むという処理になっている。また、ディスクに書き込む	
	前にリージョンサーバーに障害が発生した場合に備え、コミットログ	
	も記録されている。	
特徴等	□ Google の BigTable をオープンソースで実装したもの。	
111144.4	□ Hadoop 上に構築される。	
備考		

(4) Amazon EMR

名称	Amazon Glue	
分類	分散処理サービス	
開発·提供者	Amazon	
参照 URL 等	https://aws.amazon.com/jp/emr/	
	Amazon EMR では、管理された Hadoop フレームワークが提供され、動的	
	にスケーリング可能な Amazon EC2 インスタンスで、大量のデータを簡	
	単、高速、高コスト効率な方法で処理することができる。また、	
	Apache SparkやHBase、Presto、Flinkといった他の一般的なフレーム	
	ワークを実行することや、Amazon S3 や Amazon DynamoDB といった他の	
内容等	AWS データストア内のデータを処理することも可能である。	
	Amazon EMR では、ログの分析、ウェブインデックス作成、データ変換	
	(ETL)、機械学習、財務分析、科学シミュレーション、バイオインフォ	
	マティクスを含む、さまざまなビッグデータのユースケースに対応可	
	能である。	
	□ Hadoop 環境を構築することなく利用することができる。	
特徴等	□ AWS のサービスとして提供されているので、サーバーレスで使用可	
	能である。	
	・Apache Spark、Hadoop、HBase、Presto、Hive、その他のビッグデー	
	タフレームワークを使用することができる。	
備考	・AWS Glue と違い Spark 以外との組み合わせも可能である。	
	・類似のクラウドサービスに Google Cloud Dataproc や Azure	
	HDInsight がある。	

(5) AWS Glue

名称	AWS Glue	
	分散処理サービス	
開発・提供者	Amazon	
参照 URL 等	https://aws.amazon.com/jp/glue/	
	AWS Glue は抽出、変換、ロード(ETL)を行う完全マネージド型のサービ	
	スで、サーバーレスで使用することができる。	
	AWS サービスの1つとして提供されているため、AWS マネージメントコ	
	ンソールから数回クリックするだけで、ETLジョブを作成および実行す	
	ることができる。ETL ロードでは、AWS に保存されたデータを指定する	
	だけで AWS Glue によるデータ検索が行われ、テーブル定義やスキーマ	
	などの関連するメタデータが AWS Glue データカタログに保存される。	
	カタログに保存されたデータは、すぐに検索、クエリ、ETL で使用でき	
	る状態となり、同時にデータ変換とデータのロードプロセスを実行す	
	るコードが生成される。	
内容等		
	生成されるコードは、カスタマイズ性、再利用性、可搬性を備えてお	
	り、ETL ジョブの作成が完了後 Glue 内の Apache Spark スケールアウ	
	ト環境でジョブの実行がタスクに登録される。AWS Glue では、依存性	
	の解決、ジョブのモニタリング、アラートを行う柔軟なスケジューラ	
	も提供される。	
	AWS Glue はサーバーレスであるため、サーバーの構築や設定、管理は	
	不要であり、実行に必要な環境は自動的に構築される。また、AWS サー	
	ビスの1つであるため、発生するコストはETLジョブの実行に必要と	
	なった従量課金の費用のみである。	
	ロード(ETL)ジョブの構築、管理、実行のほとんどを自動化できる。	
胜沙安	□ データソースを自動でクロールし、データフォーマットを識別のう ・	
特徴等	え変換スキーマを提案してくれる。 □ AWS のサービスとして提供されているので、サーバーレスで使用可	
	□ AWS のサービスとして提供されているので、サーバーレスで使用可 能である。	
 備考	配である。 Apache Spark を内包している。	
畑〜ケ	uhacije obaty ふいこう (くん. の)	

(6) BigQuery

名称	BigQuery	
分類	ビッグデータ分析サービス	
開発・提供者	Google	
参照 URL 等	https://cloud.google.com/bigquery/?hl=ja	
内容等	BigQuery は、元々Google が自社内で使用していた Dremel という社内 データ解析ツールをサービスとして公開したものである。Dremel はペタバイト級のデータを扱えるようにスケールを考えて設計されたソフトウェアで、スケーラブルでかつ SQL さえ覚えれば大量のデータを使って集計や解析作業を行うことがきる。 GCP の1つのサービスとして提供されるためサーバーレスで使用することができ、データベース管理者も必要ない。 オブジェクト ストレージやスプレッドシートのデータだけでなく、カラム型のマネージドストレージのデータを分析もでき、データセット、クエリ、スプレッドシート、レポートとして分析情報を組織の内外で安全かつ容易に共有することができる。 簡単な SQL を使用して機械学習ソリューションを構築、運用化することができる。 BigQuery では、強力なストリーミング取り込み機能を使用してリアルタイムにデータを取得、分析できるため、常に最新の分析情報が得らられる。 データソースとしては、Google Cloud Storage、File Upload、Google ライブが利用可能である。	
特徴等	□ GCP のサービスとして提供されているので、サーバーレスで使用可能である。□ 毎月の無料利用枠(最大 1TB のデータ分析と 10GB のデータ保存容量)がある。	
備考		

(7) Cloud Dataproc

名称	Cloud Dataproc	
分類	ビッグデータ分析サービス	
開発・提供者	Google	
参照 URL 等	https://cloud.google.com/dataproc/	
内容等	Cloud Dataproc は、GCPで提供されるマネージド型の Hadoop および Spark のサービスである。 Cloud Dataproc の特徴としては以下の点が挙げられる。 1. データのやり取りが簡単である 通常の Spark であれば、HDFS などへデータを格納する必要があるが、 Dataproc では GCS のデータを直接利用することができる。 2. BigQuery に格納したデータを利用できる Dataproc ではファイルベースでのやり取りだけでなく、データ領域として BigQuery を利用することもできる。	
	機械学習の場合は、BigQueryで前処理を行うことも多いので、Dataprocが機械処理に向く点でもある。 3. クラスタの起動が早いコマンドから Dataproc クラスタを起動すると、短時間(90 秒ほど)で立ち上がる。このため、普段は停止しておき、必要に応じてクラスタを起動させることでコスト最適化が可能である。	
特徴等	□ GCP のサービスとして提供されているので、サーバーレスで使用可能である。□ 機械学習の前処理で利用することの多い BigQuery をデータ領域として使用することができる。	
備考	・類似のクラウドサービスに AWS EMR や Azure HDInsight がある。	

(8) Azure Databricks

名称	Azure Databricks	
分類	分散処理サービス	
開発・提供者	Microsoft	
参照 URL 等	https://azure.microsoft.com/ja-jp/services/databricks/	
	ビッグ データ分析と人工知能 (AI)の問題に適した、Apache Spark ベ	
	ースの分析サービスである。	
	自動スケーリングに対応した Spark 環境を数分で設定することができ	
	る。Python、Scala、R、SQL をサポートする他、TensorFlow、	
	Pytorch、Scikit-learn などのディープラーニングのフレームワーク	
	やライブラリからも使用することが可能である。	
内容等		
	データサイエンティスト、データエンジニア、ビジネスアナリストな	
	ど本サービスの利用者は、対話型ワークスペースで共有プロジェクト	
	の共同作業を行うことができる。	
	Azure Active Directory(Azure AD)などの Azure サービスとのネイテ	
	ィブ統合により、最新のデータ ウェアハウスや機械学習ソリューショ	
	ン、リアルタイムの分析ソリューションの構築が可能になる。	
	□ Apache Sparkベースのプラットフォームである。	
特徴等	□ Azure のサービスとして提供されているので、サーバーレスで使用	
	可能である。	
備考	Apache Spark を内包している。	

(9) Azure HDInsight

名称	Azure HDInsight
	分散処理サービス
開発・提供者	Microsoft
参照 URL 等	https://azure.microsoft.com/ja-jp/services/databricks/
≫W OUT 4	Azure HDInsigh は、Hadoop など大規模データ分散処理基盤を Azure の
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	マネージドサービスとして大量のデータ分析処理に利用することがで
	きるサービスである。
内容等	
	Apache Hadoop、Spark、Kafka などの人気のあるオープンソースフレー
	ムワークを簡単に実行することができる。Azure のサービスと組み合わ
	せ、大量のデータを処理することができる。
胜油松	□ Azure のサービスとして提供されているので、サーバーレスで使用
特徴等	可能である。
	· Apache Hadoop、 Apache Spark、 Apache Kafka、 Apache HBase、
備考	Apache Hive, Apache Storm, Microsoft Machine Learning Services
	に対応する。
	・類似のクラウドサービスに AWS EMR や Google Cloud Dataproc があ
	る。

1.7.2. 機械学習/ディープラーニングライブラリ事例・オーバービュー

(1) TensorFlow

名称	TensorFlow
分類	フレームワーク
開発・提供者	Google
参照 URL 等	https://www.tensorflow.org/
内容等	Google が開発しオープンソースで公開している機械学習(ニューラルネット)に用いるためのソフトウェアライブラリである。
	顔認識、音声認識、被写体認識、画像検索、リアルタイム翻訳、Web 検索最適化、メール分別、メール自動返信文作成、自動運転など幅広い分野での使用が想定される。
	モデルの構築やトレーニングなどの高レベル API から、柔軟性やパフォーマンスを最大化できる低レベル API まで備わっている。 対応プログラミング言語は、C 言語、C++、Python、Java、Go、 JavaScript など。対応 OS は Windows、macOS、Linux、Android、iOS など。
特徴等	□ 単一のAPIでデスクトップ、サーバーまたはモバイル端末まで対応 することができる。□ CPU、GPU、TPUに対応している。
備考	

(2) Keras

名称	Keras
分類	ラッパー
開発・提供者	François Chollet
参照 URL 等	https://keras.io/ja/
内容等	Keras は Python で書かれた高水準のニューラルネットワークライブラリである。元々は、プロジェクト ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System) の研究の一部として開発された。 Keras は迅速な実験を可能にすることに重点を置き開発され、アイデアから素早くプロトタイプを作成することが可能である。 ・ユーザーフレンドリー機械向けではなく人間向けに設計されたライブラリである。一貫したシンプルな API 群を提供し、一般的な使用事例で要求されるユーザーアクションを最小限に抑え、エラー時に明確なフィードバックを提供する。・モジュール性独立したモジュールのシーケンスまたはグラフとして設定できる。特にニューラルネットワークの層、損失関数、最適化、初期化、活性化関数、正規化はすべて新しいモデルを作成するための組み合わせ可能な独立したモジュールとなっている。・拡張性新しいモジュールをクラスや関数として簡単に追加できる。また、既存のモジュールには多くの実装例がある。新しいモジュールを簡単に作成できるため、先進的な研究に適している。 ソースードは GitHub 上にホストされ、GitHub issues page や Gitter channel、Slack channel などのサポートフォーラムがある。対応言語は Python 2.7~3.6 に対応している。
特徴等	 □ アイデアから実装までのリードタイムをできるだけ小さくすることに重点を置いて開発されている。 □ CNN と RNN の両方、およびこれらの 2 つの組み合わせをサポートしている。 □ CPU と GPU 間でのシームレスな動作をサポートしている。

-	
Ⅰ備者	バックエンドのライブラリとして、Deeplearning4j、TensorFlow、
	CNTK、Theano を使用することができる。

(3) PyTorch

名称	PyTorch
分類	ラッパー
開発・提供者	Facebook
参照 URL 等	https://pytorch.org/
	PyTorch は Facebook が開発を主導するライブラリである。
	テンソル計算に GPU を使用できるため高速化が可能である。
	自動微分を使用しシンプルなニューラルネットワークの記述が可能で
	ある。
	リバースモードの自動微分という手法を利用して、ニューラルネット
	ワークがゼロラグもしくはオーバーヘッドで任意に動作する方法を変
	更できる。この方法は PyTorch 特有のものではないが、他の実装方法
	と比べると最も速いものの一つです。
内容等	
	TensorFlow など多くのフレームワークと異なり Define by Run という
	設計思想に基づくため、ニューラルネットワークの構成を実行時に行
	うため動的な変更への対応が可能である。例えば、1 イテレーション毎
	に構成を変更するということも可能である。
	 活発なコミュニティーがあるので、動画(YouTube)による教材や
	おおに おお おお おお おお おお おお お
	Stackoveriiow (の成冊/ 真焼心管なこを利用して自己子自もわこない。
	\ゥヾ。 対応言語は Python である。
特徴等	□ GPU 処理に対応しているので、処理速度が早い。
	□ 自己学習がし易い。
	□ 研究者の使用も多いので、最新論文のアルゴリズムの実装も早い。
	Chainer に使い方が似ているので、Chainer を使用したことがあるユー
備考	ザーであれば習得が容易である。

(4) MXNet

名称	MXNet
分類	ラッパー
開発・提供者	Apache Software Fundation
参照 URL 等	https://mxnet.apache.org/
参照 URL 等	MXNet は CNN (Convolution Neural Network) と LSTM (Long Short-Term Memory) をサポートした深層学習フレームワークとして設計されている。 ・スケーラビリティコンピュートリソースを追加するだけで、より精度の高いモデルをより速い時間で学習できる。AWS の P2 インスタンスで Inception v3を実行したところ、スケーリングの実行効率はおおよそ 85%を示した。 ***********************************
	リは 4GB しか消費しない。このため、iOS や Android などリソースの 制限が厳しい動作環境での使用にも向いている
	制限が厳しい動作環境での使用にも向いている。

	 ・命令的/宣言的モデルの混在 ・豊富な深層学習モデルのサポート CNN や LSTM モデル向けに開発されたが、現在では R-CNN (Regions with Convolutional Neural Networks) や DQN (Deep Q Network) などでの使用例も公開されている。
特徴等	 □ AWS (Amazon Web Services)が支援を表明している。 □ CNN、LSTM モデル向けに開発されたが、現在では R-CNN や DQN での使用例もある。 □ 軽量であるためモバイルデバイスなどリソースに制限のある実行環境にも適している。
備考	

(5) Deeplearning4J

名称	Deeplearning4J
分類	フレームワーク
開発·提供者	Adam Gibson
参照 URL 等	https://deeplearning4j.org/
	Java 向けのディープラーニングのライブラリであり、デープラーニン
	グアルゴリズムを広く実装したフレームワークである。
	制限付きボルツマンマシン、畳み込みネットワーク、オートエンコー
	ダー、再起ネットワークなどのニューラルネットワークを組み合わせ
	て様々な種類のディープネットワークを構成することができる。
内容等	
	Hadoop/YARN 及び Apache Spark と組み合わせて使用することで分散処
	理も可能である。また、CUDA も併用することが可能で分散 GPU による
	処理も可能である。
	CPU 対応と GPU 対応のバージョンがあり、実行時のクラスパスに含まれ
	るライブラリを切り替えることで CPU のみを搭載する環境で開発し、
	実運用は GPU を搭載する環境でおこなうということも簡単におこなえ
	る。
特徴等	対応言語は Java である。
	□ Apache Spark がサポートされているため分散処理も可能である。 □ CPU 環境 GPU 環境の切り替えが容易である。
	□ 有償サポートを提供する企業が存在する。 □ テキスト処理、自然言語処理での事例が多い。
	□ テキスト処理、自然言語処理での事例が多い。 □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
備考	

(6) Theano

名称	Theano
分類	フレームワーク、算術ライブラリ
開発・提供者	モントリオール大学
参照 URL 等	http://deeplearning.net/software/theano/index.html
内容等	Theano はディープラーニングのライブラリであるが、「行列演算」 「C++、CUDA のソースコードを生成してコンパイル」「自動微分」 「GPU 処理」という機能もあり、場合によっては Python で標準的に使用される計算ライブラリである Numpy よりも高速な場合がある。ディープラーニング専用のライブラリという訳ではなく、スクラッチでライブラリを実装したい場合にも使われることがある。 実際、Pylearn2 などは Theano をベースに使用している。 短所としては次の点が挙げられる。 ・単一の GPU しか使用できない。 ・文法が複雑で学習難易度が高い。 ・実装したモデルが大きくなると、それに比例してコンパイル時間が
	長くなる。 対応言語は Python である。
特徴等	□ Python のコードを C++、CUDA ヘコンパイルし実行することで Python であるにも関わらず高速な処理が可能である。
備考	現在は開発が終了している。

(7) Chainer

名称	Chainer
分類	ラッパー
開発・提供者	Preferred Networks
参照 URL 等	https://chainer.org/
内容等	Chainer は Python で深層学習のプログラムを実装する際に使用できるフレームワークであり、日本の企業(Preferred Networks 社)が開発している。 Chainer から GPU を手軽に利用できる Cupy (Cupy は Chainer v2 以降独立したライブラリとして提供されている)を内蔵する。 ミニ言語によりコードを記述するタイプのフレームワークもあるが、Chainer は Python のコードでそのままモデルの実装をおこない、GPUまで利用できるため、学習コストの小ささ、デバッグの容易さという特徴がある。 ニューラルネットワークの構築と計算を同時に行う Define-by-Run 方式である。 Chainer の利用用途には次のような用途が挙げられる。 ・顔認識 ・音声認識 ・被写体認識 ・画像検索 ・線画自動着色 ・自然言語処理 対応言語は Python 2.7~3.6 に対応している。
特徴等	□ インストールが簡単。□ Cupy とあわせ使用することで GPU 演算を利用できる。□ 日本企業が開発していることもあり日本語のユーザーグループも用意されており、日本国内を中心として利用が多い。
備考	日本企業が開発しているライブラリである。

(8) DyNet

名称	DyNet
分類	フレームワーク
開発・提供者	カーネギーメロン大学
参照 URL 等	https://github.com/clab/dynet
内容等	Chainer などと同じく、バックプロパゲーションに必要なデータ構造をプログラムの実行時に動的に生成する Define by Run を採用している。これは主に recurrent/recursive neural network 系の実装が必要となる自然言語処理等で効果を発揮する。 ミニバッチの隠蔽機能をもちユーザーが指定したデータに対してミニバッチ処理か、ミニバッチ処理の場合はバッチの大きさを自動的に判別するのでネットワークを記述するコードではそれられを区別する必要がない。 対応言語は Python と C++に対応している。
特徴等	□ Define by Run を採用している。□ C++からの利用にも対応している。□ 複数 GPU には対応していない。
備考	

(9) Sonnet

名称	Sonnet
分類	ラッパー
開発・提供者	DeepMind
参照 URL 等	https://github.com/deepmind/sonnet
内容等	Sonnet は TensorFlow をニューラルネットに特化してラッパライブラリとして実装したものである。 TensorFlow のコードと混在させることができるので、重要ではない箇
	所はSonnetで記述し、細かい処理がが必要な箇所はTensorFlowで記述するという使い分けが可能である。
	計算グラフの構成が特徴的で、再利用可能なモジュールを複数回接続 して計算グラフを構成する。 対応言語は Python に対応している。
特徴等	□ TensorFlow と Sonnet のコードを混在することができる。 □ ネットワークを Module と呼ばれる再利用可能な複数のサブクラスで構成する。
備考	

(10) Spark ML(MLlib)

名称	Spark ML(ML1ib)
分類	フレームワーク
開発・提供者	Apache
参照 URL 等	https://spark.apache.org/docs/latest/ml-guide.html
	Spark ML はインメモリ分散処理基盤の Apache Spark を中心とした機械
	学習ライブラリである。Apache Spark を基盤とするため、モデル精度
	を高める、扱っているデータが増え続ける用途といった大量のデータ
	を扱う用途に向いている。
内容等	
	Apache Spark はクラスタ構成での運用となるが、開発時はクラスタ構
	成としないローカルモードで動作させることも可能である。
	対応言語は Java、Scala、Python および R に対応している。
	□ Apache Spark を基盤とするため大容量のデータを扱うケースに向
	いている。
特徴等	□ Spark SQL で作成したテーブルデータを機械学習で活用できる。
	□ Spark.mllib内のRDDに基づいたAPIはメンテナンスモード(将来的
	には非推奨)であり、主要な API は DataFrame となっている。
備考	

(11) Mahout

名称	Mahout
分類	フレームワーク
開発・提供者	Apache
参照 URL 等	http://mahout.apache.org/
	Mahout は分散処理基盤の Apache Hadoop と組み合わせて使用する機械
	学習ライブラリである。Apache Hadoop を基盤とするため、MapReduce
	を利用することでスケーラブルな性能向上が可能である。
内容等	Mahout の機能として次のものが提供されている。
	・MapReduce に対応したクラスタリング実装 K 平均法、ファジィ K 平均法、Canopy、ディリクレ、平均シフトなど
	・分散型と補完型の単純ベイズ分類器
	・進化的プログラミングに使用する分散型適応度関数
	・行列とベクトルに関するライブラリ
	・上記アルゴリズムを使用したサンプル
	MapReduce で実装された、クラスタリングやレコメンドなどの機械学習 アルゴリズムが提供されている。
特徴等	□ Apache Hadoop を基盤とするため大容量のデータを扱うケースに向いている。
備考	

(12) gensim

名称	gensim	
分類	フレームワーク	
開発·提供者	Radim Řehůřek	
参照 URL 等	https://radimrehurek.com/gensim/	
	gensimとは、大量の文書からいくつかのトピックを分類し、与えられ	
	た文章がどのトピックに属するかを分類するトピック分析をおこなう	
	ためのライブラリである。	
内容等	gensimにはLSI(Latent Semantic Indexing)、LDA(Latent Dirichlet	
	Allocation)、DTM(Dynamic Topic Modeling)などのトピックモデルが	
	実装されている。	
	対応言語は Python に対応している。	
特徴等	□ トピック分析をおこなうライブラリである。	
	□ Word2Vec や Doc2Vec をシンプルな API から利用できる。	
備考		

(13) Pandas

名称	Pandas	
分類	ライブラリ	
開発・提供者	The PyData Development Team	
参照 URL 等	http://pandas.pydata.org/	
	直接的な機械学習のライブラリではないが、Python で機械学習を実装	
	する上で重要となるデータライブラリである。	
内容等	Pandas の基本的なデータ構造は DataFrame と呼ばれるものである。これは行と列からなる二次元のテーブルのことである。 Pandas と類似のライブラリとして NumPy があるが、NumPy では列ごとに異なるデータ型を扱うことができないが、Pandas では列ごとに異なるデータ型を扱える。このことで、例えば CSV 形式のデータを扱う際に列による数値、日付、住所などが混在するデータを扱うことができる。	
	Pandas には豊富なデータ加工関数が提供されており、欠損値の補完や 削除、文字列の数値変換、指定した列の抽出などデータ加工から、平 均や標準偏差などのデータ解析の機能が豊富に揃っている。 これらを組み合わせることでデータの前処理が楽におこなえる。	
	対応言語は Python に対応している。	
特徴等	□ 機械学習で重要となるデータセットの解析、処理といった、データ	
	の前処理のためのライブラリである。	
	□ NumPy とは異なり、列ごとに異なる型を持つデータフレームを扱え	
	る。	
備考		

(14) Neural Network Libraries

名称	Neural Network Libraries(NNabla)	
分類	フレームワーク	
開発・提供者	Sony	
参照 URL 等	https://nnabla.org/ja/	
	ソニーが自社で培ってきた AI、ディープラーニングのコア部分をオー	
	プンソースとして公開したものである。	
	コア部分は様々な環境で動作するように C11 で記述されており、	
	Windows や Linux など多くのプラットフォームで動作する。	
内容等	後発のライブラリであるため次のような実装の最適化をおこなってい	
171分寸	る。	
	・CUDA、cuDNN の最大活用化による高速化	
	・計算グラフ実行のオーバーヘッド削減	
	・インプレース実行とメモリプールを利用したメモリ共有	
	対応言語は Python に対応している。	
特徴等	□ 新しいコンピューティングデバイスへの対応が容易である。	
	□ Define by Run と Define and Run のどちらにも対応している。	
備考	日本企業が開発しているライブラリである。	

(15) Caffe2

名称	Caffe2	
分類	フレームワーク	
開発・提供者	Facebook	
参照 URL 等	https://github.com/caffe2/caffe2	
	Caffe2 は Caffe の流れを組むディープラーニングフレームワークで、	
	Facebook が開発を主導している。前進となる Caffe の開発者である	
	Yangqing Jiaが Facebook に移籍し開発を進めている。	
	Caffe2 の前身となる Caffe のモデルを移植して使用することも可能で	
	ある。	
内容等	ONNX 形式のモデルをサポートしているため、例えば PyTorch で学習し	
	たモデルを Caffe2 でモバイルデバイスで使用するということも可能で	
	ある。	
	複数 GPU に対応した分散処理が可能になっている。	
	対応言語はPythonとC++に対応している。	
特徴等	□ Caffe と異なり企業が開発を主導している。	
	□ 複数 GPU に対応した分散処理が可能である。	
備考		

1.8.ハードウェア実装の事例

1.8.1. ハードウェア実装事例・オーバービュー

(1) Tensor Core

名称	Tensor Core	
	GPU	
開発・提供者	NVIDIA	
参照 URL 等	https://www.nvidia.com/ja-jp/data-center/tensorcore/	
	Tensor Core は、Volta マイクロアーキテクチャで初めて搭載された行列演算を実行するための専用のプロセッサで、製品としては GV100 に	
	搭載されている。	
内容等	これまでは従来の行列演算ユニットである CUDA を使用して単精度 (FP16)の行列演算をディープラーニングの推論に使用していた。Voltaではディープラーニングの推論と学習の両方に対応した Tensor Coreという新しい演算コアを搭載し、ディープラーニングで多用する行列の積和演算(行列の乗算は FP16、加算は FP32 でおこなう)を実行する。 CUDA の算術ライブラリ cuBLASで GEMM における性能を Tensor Coreを搭載しない前世代の製品(GP100)が CUDAで処理した場合と GV100が Tensor Coreで処理した場合を比較すると FP32では 1.8 倍、FP16では	
	9. 3 倍の性能となる。 cublas Single Precision (FP32) proo (cuda 8) vioo (cuda 9) proo (cuda 8) vioo (cuda 9) proo (cuda 8) proo (cuda 9) proo (cuda 8) proo (cuda 9) proo (cuda 9) proo (cuda 8) proo (cuda 8) proo (cuda 8) proo (cuda 8) proo (cuda 9) proo (cuda 8) pro	
特徴等	□ 従来の CUDA では推論のみであったが、Volta では推論と学習の両方に対応した Tensor Core を搭載している。□ Volta では 120T Tensor FLOPS を超える推論性能	

備考		

(2) Radeon Instinct

(2) Radeon	Instinct	
名称	Radeon Instinct	
分類	GPU	
開発・提供者	AMD	
参照 URL 等	https://www.amd.com/ja/graphics/servers-radeon-instinct-mi	
prince or control or	AMD では AI 向けに Radeon Instinct という製品をリリースし、現在は Vega10 というアーキテクチャを採用している。 AMD でも NVIDIA の CUDA と同じような ROCm というソフトウェアライブラリや開発ツールを提供している。ROCm にはコンパイラの LLVM や OpenCL、HIP (Heterogeneous Compute Interface for Portability)と いったツールが含まれる。これらのツールを上で TensorFlow や Caffe2 などのフレームワークを利用することができる。 Delivering An Open Platform For GPU Computing Language Runtime API ROCm Driver ROCrystem Runtime API ROCm Driver Rocm Driver は、 はは、 性様被学習ベースの AI 開発がさらに強化される。 Vega20 では、 体域学習の推論フェーズでは 4bit 整数演算 (INT4) も Rapid Packed Math の対象として追加される。 機械学習の推論フェーズでは 4bit 整数演算で十分なケースも多いので推論性能の向上が期待される。また、Vega10 では FP32 演算性能の 1/2 (Vega10 比で 8 倍の演算性能)に向上する。	

	AMD RADEON INSTINCT™ MI60 Competitive Performance Tesla V100 PCIe MI60 PCIE AMD RADEON IMAGES PER SECOND Comparable Performance vs. Tesla V100 PCIe MI60 PCIE MIE MICO PCIE MICO PCIE MICO PCIE MICO PCIE MICO PCIE MICO PC
	□ NVIDIAのCUDAと同じようなROCmというツールを提供している。
	□ フレームワークの高速化に GPU を使用する事例としては、NVIDIA の
特徴等	方が多い。
村田寺	□ Vega10を採用した Radeon Instinct MI25の性能は、単精度浮動小
	数点数演算(FP32)で 12.3TFLOPS、半精度浮動小数点演算(FP16)で
	24.6TFLOPS を謳う。
備考	

(3) Arm ML

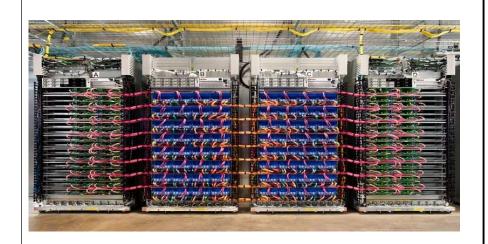
名称	Arm ML	
分類	ニューラルプロセッサ	
開発・提供者	Arm	
参照 URL 等	https://developer.arm.com/products/processors/machine-	
	learning/arm-ml-processor	
内容等	Arm ML (Machine Learning) プロセッサは、各社から登場しているニューラルネットプロセッサと同じくニューラルネットワークを低電力かつ高パフォーマンスに実行する。これは CPU や GPU、DSP を拡張したものではなく、ML 処理専用に設計された専用アーキテクチャのプロセッサである。 2018 年 2 月に発表、2018 年 5 月に技術的な詳細が明らかにされたが、2018 年 10 月現在では搭載製品は出荷されていない。 Arm ML は 1 コアから 16 コアまでスケールし、IoT から車載、サーバーサイドまでをターゲットする。 電力効率は 7nm プロセス時に 3TOPS (Trillion Operations per Second) / Watt と極めて電力効率が良い。推論処理で最大構成の場合 4.6TOPS の性能を発揮する。 他のニューラルネットプロセッサにはない特徴として、RNN や LSTM といった CNN 以外のネットワークモデルにも対応する。 Convolution and vector product computation ・ Feature maps are read from SRAM ・ The same map is broadcast to each CE ・ Direct to the MAC wift ・ Effectively reducing 16 unique Output Feature Maps ・ Output is issued direct to the PLE ・ Results from the PLE written back to SRAM The same map is broadcast to each CE ・ Direct to the MAC wift ・ Effectively reducing 16 unique Output Feature Maps ・ Output is issued direct to the PLE ・ Results from the PLE written back to SRAM The same map is broadcast to each CE ・ Direct to the MAC wift ・ Results from the PLE written back to SRAM The same map is broadcast to each CE ・ Direct to the MAC wift ・ Producing 16 unique Output Feature Maps ・ Output is issued direct to the PLE ・ Results from the PLE written back to SRAM The same map is broadcast to each CE ・ Direct to the MAC wift ・ PLE ・ Results from the PLE written back to SRAM The same map is broadcast to each CE ・ Direct to the MAC wift ・ PLE written back to SRAM The same map is broadcast to each CE ・ Direct to the MAC wift ・ PLE ・ Results from the PLE written back to SRAM	
特徴等	□ CN以外にもRNNやLSTMといったネットワークモデルにも対応する。□ 推論処理の最大構成時の性能は 4.6TOPS	

	□ 推論の電力効率の向上のためプルーニング(剪定)処理をハードウ
	ェアでおこなう。
	□ データ制度は INT8(8bit 整数)のみとし、浮動小数点演算はサポー
	トしない。
備考	搭載製品の登場は 2018 年頃とみられる。

(4) Arm OD

名称	Arm OD	
分類	ニューラルプロセッサ	
開発・提供者	Arm	
参照 URL 等	https://developer.arm.com/products/processors/machine-	
◇ 巛 ∪KL 夺	learning/arm-od-processor	
	Arm OD(Object Detection)プロセッサは、オブジェクト認識専用のプ	
	ロセッサである。	
	Arm OD は現時点でリリース済みであり監視カメラなど組み込み用途で	
	利用されているが、Arm ML プロセッサとあわせ Arm OD プロセッサも第	
	二世代の製品をリリースする。Arm ML と組み合わせての構成も可能で	
	ある。	
	第二世代の OD プロセッサでは、フル HD 解像度/60fps の群衆動画から	
	リアルタイムで個々の顔部分を検知することが可能である。	
	Arm ML と組み合わせ、オブジェクト検知処理を Arm OD ヘオフロードす	
内容等	ることで Arm ML 側でより高度な処理をおこなうことが可能となる。	
144	OD plus ML Processors: Better user experience	
	Combined Arm solution:	
	✓ Real-time detection of pre-determined object types (e.g. people, cars, road signs etc) with highest accuracy	
	 ✓ OD processor isolates areas of interest in real time with Full HD @ 60fps. ✓ Significant reduction in overall processing by limiting ML algorithms to OD Processor's 	
	regions of interest ✓ Interframe tracking and face recognition enabled by additional software libraries	
	Image/ Video Metadata stream (Regions of interest) CPU/ GPU/ CPU/ GPU/	
	OD processor ML processor	
	Beth Ben	
	The embargo for this content presented at Arm Tech Day will lift on Tuesday, May 22nd at 8am Pacific Standard Time. Corresponding UK and Japan times are: Tuesday, May 22nd 4pm BST/Wednesday, May 23 at 12am JST	
	□ Arm ML と Arm OD を組み合わせた構成も可能である。	
特徴等	□ フル HD 解像度/60fps の群衆動画からリアルタイムで個々の顔部分	
	を検知することが可能である。	
備考	搭載製品の登場は2018年頃とみられる。	

(5) A12 Bionic


名称	A12 Bionic
分類	ニューラルプロセッサ
開発・提供者	Apple
参照 URL 等	https://www.apple.com/jp/iphone-xs/a12-bionic/
内容等	全世代のAll Bionic では搭載するニューラルネットプロセッサ (Neural Engine)は1つだったが、Al2 Bionic では8個搭載している。 Al2 Bionic の推論性能はAll Bionic の9倍で5TOPSを達成している。 iOSではリアルタイムでの被写体や輪郭の抽出処理、動画のHDR 処理などに利用されている。 Apple の機械学習フレームワークのCore ML から利用できる。
特徴等	□ 推論処理の性能は 5TOPS
備考	

(6) TPU

名称	TPU
	ニューラルプロセッサ
<u>-^^^</u> 開発・提供者	Google
参照 URL 等	https://cloud.google.com/tpu/
># OILL F	Google が機械学習向けに特化した ASIC として開発したものが TPU である。機械学習に特化しているため、ワットあたり IOPS を高くするため 意図的に演算精度を犠牲にしている。 他の AI アクセラレータの開発メーカーは主に IoT やモバイル向けに開発しているが、TPU はデータセンターでの利用をターゲットとしている。 Google 社内では TPU を AlphaGo や Google ストリートビューのテキスト 処理、Google フォトの写真処理、検索結果の RankBrain においても使用されている。また、GCP での利用も可能になっている。
内容等	TPUには3世代あり、次のような特徴がある。 第一世代
	8 ビット精度の演算器を 65,536 個搭載した構成である。学習処理に必要な演算精度はないので、推論処理のみに使用する。 28nm プロセスで製造され、消費電力は1ユニット 40W に抑えられている。
	第二世代 16 ビット精度の演算器を 32,768 個搭載したプロセッサを 1 ユニットに 4 個搭載した構成である。学習処理に必要な 16 ビット精度の演算器を 搭載するため、推論処理に加え学習処理にも使用できる。1 ユニットの 性能は 180TFLOPS となる。

ネットワークで相互接続しグリッド状態の「TPU Pods」として構成することで性能を向上させることができる。Google のデータセンターでは64 ユニットで構成された TPU Pods を使用しており、演算性能は11.5PFLOPS を実現している。

第三世代

2018 年 5 月に発表された。現時点では詳細は発表されていないが、第二世代に比べて処理性能は 8 倍となり、TPU Pods としては 100PFLOPS を実現する。

これまでの第一世代、第二世代の TPU は空冷であったが、第三世代からは冷却方式が液体冷却となった。

- 特徴等
- □ GCP(Google Cloud Platform)でも利用可能である。
- □ TensorFlowからのみ利用可能である。
- □ 第一世代は推論のみ、第二世代/第三世代は推論と学習に対応する。

備考

(7) Edge TPU

名称	Edge TPU
分類	ニューラルプロセッサ
開発・提供者	Google
参照 URL 等	https://cloud.google.com/edge-tpu/
内容等	https://cloud.google.com/edge-tpu/ TPU がクラウドサイドでの利用をターゲットとした製品であるのに対して、Edge TPU は IoT デバイスなどエッジ側での利用をターゲットした製品である。エッジ側での利用を想定するため、電力効率は高く 4TOPS/2W を実現している。 提供形態は、NXP 社のクアッドコア Arm プロセッサを内蔵した SoC、WiFi、Microchip 社のセキュアエレメントを搭載した SoM(System on Module)と、I/0 関連の機能を搭載するベースボードを組み合わせた開発キットとして提供予定である。顧客が製品に組み込む場合は、SoM のみで販売する予定である。
特徴等	□ 推論のみに使用できる。 □ TensorFlow Lite から利用可能である。
	□ 2018 年秋の出荷を予定している。
備考	

(8) Neural Compute Stick 2

名称	Neural Compute Stick 2
分類	ニューラルプロセッサ
開発・提供者	Intel
参照 URL 等	https://newsroom.intel.co.jp/news/intel-unveils-intel-neural-compute-stick-2/
内容等	Neural Compute Stick 2 は、Intel が買収した Movidius の Myriad X VPU を搭載した AI アクセラレーターである。 前世代の Neural Compute Stick と比較してディープニューラルネット ワークで 8 倍の性能を実現している。 ツールキットには OpenVINO を使用する。 OpenVINO を使用して開発されたソフトウェアは、CPU や GPU、FPGA 製品にも対応できるため、開発時には Neural Compute Stick 2を使用し、製品時には FPGA を採用するといったことが可能である。 USB デバイスとして提供されるため、プロトタイプの開発時にシングルボードコンピュータと組み合わせて使うといった用途に向いている。また、1 台で推論性能が不足する場合は、複数台を同時に使用することで推論性能を向上させることも可能である。
特徴等	■ 画像処理向けの製品である。■ USB デバイスとして提供されるためプロトタイプ開発での使用に向いている。
備考	